

QAS Batch

API Guide

Copyright

All copyright and other rights in this manual and the licensed programs described in

this manual are the property of Experian Ltd save for copyright in data in respect of

which the copyright belongs to the relevant data provider.

No part of this manual may be copied, reproduced, translated, or reduced to any

electronic medium or machine readable form without the written consent of Experian

Ltd.

Microsoft, Word and Windows are trademarks of Microsoft Corporation.

© Experian Ltd. 2022

Version 7.98.0, Jan 2022

Contacts and Support

For resolutions to common issues, answers to frequently asked questions and hints

and tips for using our products, contact our regional Support teams:

www.edq.com/documentation/contact-support

For more information about us and to get in touch:

www.edq.com

https://www.edq.com/documentation/contact-support/
https://www.edq.com/documentation/contact-support/
https://www.edq.com/
https://www.edq.com/

iii

Contents

QAS Batch ... 1

Contents .. 3

Introduction ... 1

What Is QAS Batch API? ... 1

What Does This Guide Contain? ... 2

Accompanying Documentation .. 3

Data Guide .. 3

API Help .. 4

Technical Support ... 4

Web ... 4

E-mail / Telephone .. 4

QAS Batch API Installation .. 5

Overview ... 5

System Requirements ... 5

Licenses .. 7

What Is A License Key? .. 7

Adding A License Key ... 7

Expiry Warnings .. 8

Evaluations ... 8

Installing QAS Batch API ... 9

Windows ... 9

UNIX ... 9

Installing And Updating Data ... 10

Windows ... 10

UNIX ... 12

About Data Files ... 15

Activating Metered Datasets .. 17

iv

Testing Your API Installation ... 17

The QAS Batch API ... 21

How QAS Batch API Matches Addresses .. 21

The Returned Address .. 25

Retrieving DataPlus Information .. 26

Using QAS Batch With Suppression Additional Datasets 27

Address Match Codes ... 29

Match Success .. 30

Match Confidence Level ... 34

Postal Code Action Indicator .. 35

Address Action Indicator ... 36

Information Bits ... 36

Generic Information Bits .. 36

Extended Information Bits ... 37

Matching Rules ... 38

Generic Matching Rules ... 38

Essential Matching Rules ... 39

Preferred Matching Rules ... 39

Close Matching Rules ... 39

Acceptance Matching Rules ... 40

Further Rules .. 40

Dataset-Specific Matching Rules .. 41

API Function Reference ... 43

Data Types .. 43

Function Return Values .. 44

Parameters (Input) .. 44

Parameters (Output) ... 44

Calling Functions From Languages Other Than C ... 45

Passing By Value Or By Reference .. 45

NULL Termination ... 45

v

Padding ... 46

Example Of Data Types .. 47

Multithreaded Integrations ... 48

Pseudocode Example Of QAS Batch API .. 49

QAS Batch API Functions ... 54

QABatchWV_ChangeLayout .. 61

QABatchWV_Clean .. 63

QABatchWV_Close... 66

QABatchWV_CompareAuditCode .. 68

QABatchWV_CounterClose .. 70

QABatchWV_CounterOpen .. 72

QABatchWV_CounterReport .. 74

QABatchWV_CounterReportLength ... 76

QABatchWV_CountryCount ... 78

QABatchWV_DataSetCount ... 80

QABatchWV_DataSetInfo ... 82

QABatchWV_DPVGetCode .. 84

QABatchWV_DPVGetCodeLength ... 86

QABatchWV_DPVGetInfo .. 87

QABatchWV_DPVSetKey ... 89

QABatchWV_DPVState .. 90

QABatchWV_EndSearch .. 92

QABatchWV_FormattedLineCount ... 94

QABatchWV_GetAuditCode ... 96

QABatchWV_GetCountry ... 98

QABatchWV_GetDataSet ... 100

QABatchWV_GetDPFieldCount ... 102

QABatchWV_GetDPFieldInfo ... 104

QABatchWV_GetDPFieldName ... 107

QABatchWV_GetFormattedLine ... 109

QABatchWV_GetLayout ... 111

vi

QABatchWV_GetLicenceInfo ... 113

QABatchWV_GetMatchInfo .. 115

QABatchWV_GetOItltem .. 117

QABatchWV_GetOIts ... 119

QABatchWV_GetUnusedInput ... 121

QABatchWV_LayoutCount ... 124

QABatchWV_LayoutLineCount .. 126

QABatchWV_LayoutLineElements ... 128

QABatchWV_LicenceInfoCount .. 131

QABatchWV_Open ... 133

QABatchWV_RunMode .. 136

QABatchWV_Shutdown .. 138

QABatchWV_Startup .. 139

QABatchWV_UnusedLineCount ... 141

QAErrorHistory .. 143

QAErrorLevel .. 145

QAErrorMessage .. 146

QASystemInfo ... 147

QAS Batch API Configuration .. 147

Format Of A Configuration File .. 148

Configuring QAS Batch API... 150

QAWSERVE Settings .. 151

InstalledData ... 151

DataMappings ... 152

CorrectAApiLoc ... 154

CorrectADataLocUSA ... 154

CorrectADataLocCAN ... 155

QAWORLD Settings .. 156

CountryBase ... 156

CountryRevert ... 158

LogErrors .. 159

vii

LogFile .. 160

BatchTimeout .. 161

CleaningAction .. 162

SearchLevel .. 163

CacheMemory ... 164

CorrectACacheLevel ... 165

NamesTolerance... 166

OemCharacterSet ... 167

DatasetPrecedenceOrder ... 168

Certification ... 169

Setting The Input Address Format ... 170

InputLineCount .. 170

InputLineN ... 170

Setting The Output Address Format .. 172

AddressLineCount .. 172

AddressLineN ... 172

CapitaliseItem ... 173

AbbreviateItem .. 174

ConditionalFormat... 175

AbbreviateAddr ... 176

CompatibilityFormatting .. 177

MultiValueDPSeparator .. 177

QALICN Settings ... 178

Appendix A: Error Code .. 179

Appendix B: Data Checker Utility .. 186

Appendix C: Suppression Data – Uses and Benefits 187

Appendix D: Analysing Costs of Suppression 191

About Clicks .. 192

Permanent Clicks .. 192

One-Off Clicks ... 192

viii

Dual Clicks .. 193

Tracking Suppression ... 193

Suppression Hierarchy .. 194

Paying For Suppression Data .. 195

Managing Suppression Costs .. 197

To-Date Billing .. 197

Temporary Counters ... 198

Estimate Mode .. 198

Troubleshooting .. 199

Appendix E: Names Matching Tolerance .. 200

Appendix F: Delivery Point Validation .. 205

DPV Seed Addresses ... 205

Encountering A Seed Address .. 205

Multithreading Considerations ... 207

Appendix G: Generic Information Bits .. 209

Appendix H: Integration... 215

Integrating XML reports .. 215

Glossary Of Terms .. 219

Index .. 227

0 .. 227

5 .. 227

9 .. 227

A ... 227

C ... 227

D ... 228

E ... 229

F ... 229

G ... 229

H ... 229

ix

I ... 229

L .. 229

M ... 230

N ... 230

O ... 230

P ... 230

Q ... 230

S ... 231

T ... 232

U ... 232

W .. 232

X ... 232

1

Introduction

What Is QAS Batch API?

QAS Batch API cleans the address records in your database by verifying them

against the official postally-correct address files for the relevant country. Cleaned

records are assigned a match result, based on the accuracy of the original

address.

QAS Batch API does not directly access your file of address records. You must

extract the records that you wish to check, pass them through QAS Batch API one

at a time and, where appropriate, subsequently update your database.

QAS Batch API can make use of several datasets, each of which contains full

address information for one country. You can choose to search on one or more of

these datasets, depending on the addresses that you have. Some datasets are

enhanced further with Additional Datasets, which allow you to access a variety of

additional data, such as Names, Business or Utility information. For more

information about available Additional Datasets for your data, see the relevant

Data Guide.

To maximize the ease of integrating this product, it is supplied with the following

interfaces and test harnesses:

⚫ C API;

⚫ C#.NET;

⚫ Java.

To facilitate easy integration, Experian Data Quality also supplies detailed sample

code in those languages.

These interfaces, test harnesses and sample code are for use on Windows

systems only.

2

What Does This Guide Contain?

In this manual you can find information on:

1. Installing QAS Batch API and Updating Data

The section beginning on page 5 describes how to install QAS Batch API,

update data, and test your installation. It also provides information on license

keys.

Running the test harness supplied with the API should verify that you have

installed the API correctly. It will also give you an idea of what QAS Batch API

can do, and the type of results it can produce. See page 18 for more

information.

2. How QAS Batch API Works

The section of the manual starting on page 21 describes how QAS Batch API

searches on your addresses and the match codes it produces. Reading this

should clarify the values that are returned by some of the API functions.

3. Pseudocode Example

The pseudocode example on page 49 demonstrates a possible

implementation of the API functions.

4. Using the API Functions

The listing of QAS Batch API functions starts on page 54. You do not have to

use all the functions.

It is recommended that you integrate the API in stages, beginning with the

start-up and shutdown functions, then adding the open and close functions,

followed by address search and retrieval facilities. Any other functions can be

added in the appropriate places. You should also make use of the system

functions, especially QAErrorMessage. This function enables you to see the

description of any errors that occur, and as such should be called after any

function returns an error. A full list of error codes starts on page 179.

3

5. Configuring your API

Before running your integrated API, you need to give QAS Batch API:

⚫ the name and location of your dataset(s);

⚫ the level of address cleaning you want to undertake;

⚫ the format of your output address;

⚫ the name of your log file if there is one.

This information should be specified in the configuration file. Details of how to

do this start on page 147.

6. Using QAS Batch API With Suppression Data

This section describes the benefits of using QAS Batch API with AUS or GBR

Suppression data, and how to pay for its use.

Accompanying Documentation

This section provides a list of the documentation supplied with QAS Batch API

and where it can be located.

Data Guide

A Data Guide is supplied with each dataset you purchase. This guide provides

data installation instructions, dataset-specific information and search tips for each

dataset and should be used in conjunction with the other documentation supplied

with QAS Batch API. Any functionality unavailable in QAS Batch API is also

covered.

Under Windows, you have the option to install the Data Guide during data

installation. The guide is installed to C:\Program Files\Experian\Data Guides by

default. If you choose not to install the guide, it can be accessed from the Docs

folder on the Data installation CD.

Under UNIX, you should copy across the Docs folder to a location of your choice.

4

API Help

An API help system is provided in the QAS Batch API program group in the Start

menu. This help system provides similar information to that included in this

manual.

Technical Support

Experian Data Quality provides three forms of Technical Support.

Web

If you encounter problems using QAS Batch API, that are not answered in the

documentation, please visit the Experian Data Quality support website

http://support.qas.com. Answers to questions about all aspects of Experian Data

Quality products are contained within a FAQ section and a searchable knowledge

base.

E-mail / Telephone

If you cannot locate the required information on http://support.qas.com, Experian

Data Quality Technical Support can be contacted via e-mail or telephone. The

Technical Support contact details for each local Experian Data Quality office can

be found at http://support.qas.com/contact.

In order that your request can be dealt with as efficiently as possible, it would be

helpful if you could have your Experian Data Quality account reference number

and the version number of the software you are using to hand.

http://support.qas.com/
http://support.qas.com/
http://support.qas.com/
http://support.qas.com/contact

5

QAS Batch API
Installation

Overview

Follow these steps to install QAS Batch API:

1. Install the product. See "Installing QAS Batch API" on page 9.

2. Once the product installation is complete, you can install Experian Data

Quality data. See "Installing And Updating Data" on page 10.

System Requirements

To run QAS Batch API you will need the following:

Operating System

- Windows

The following Windows operating systems are supported:

⚫ Server machines:

⚫ Windows Server 2016 64-bit

⚫ Windows Server 2012 R2 64-bit

⚫ Desktop machines:

⚫ Windows 7 Professional SP1 64-bit

⚫ Windows 10 Pro 64-bit

For more information about downloading Service Packs,

see http://support.microsoft.com.

http://support.microsoft.com/

6

Operating System

- UNIX

The following UNIX operating systems are supported:

⚫ Sun Solaris 64bit (Sparc) - 10, 11

⚫ IBM AIX 64 bit (Power 5) - 6.1

⚫ Linux (x86-64) - kernel: 2.6.18; GCC: 4.1.2

⚫ Linux (x86-64) - kernel: 2.6.32; GCC: 4.4.7

Available memory 1GB (minimum), 4GB (recommended)

Disk Space At least 100MB of drive space is required to install the QAS

Batch API program files.

Further space is required to install the dataset files. Refer

to the Data Guide supplied with your data for details about

how much space you will need for each dataset.

You also need to ensure that there is sufficient disk space

for QAS Batch API to process your addresses. The space

used depends on the size and type of input database, but

as a general rule you should ensure that space equivalent

to at least the size of your database is available.

Other A CD/DVD drive (this is required for installation only, and

only if you are installing your product/data via installation

disks).

An internet connection (if using Electronic Updates, or for

DPV unlocking in the event of encountering a seed

address when using the USA dataset); this does not have

to be on the machine running QAS Batch API.

7

Licenses

What Is A License Key?

A license key is required for each combination of data and product that you

purchase. Failure to enter a valid license key means that the product will be unable

to use the data. You should have already received licenses from Experian Data

Quality for any products and datasets you have purchased. If you have not

received them, please contact Technical Support. See "Technical Support" on

page 4 for more information.

Adding A License Key

Windows Installer Users

If you have chosen to install/update your data using installation disks rather than

Electronic Updates, the data installer prompts you to enter a license key for each

product / data combination for which you have purchased data. For example, if

you are using both QAS Pro and QAS Batch API and have purchased GBR data

for both products then you will be asked to enter a separate GBR license key for

each product.

See "Installing And Updating Data" on page 10 for more information.

Non-Windows Installer Users

If you are running QAS Batch API on UNIX, or you do not install data using the

Windows installer utility, then you will need to manually edit qalicn.ini to insert the

license keys supplied with your data. Each key should appear on its own line,

starting on the first character of the line.

Ensure that you enter license keys only for the product associated with the

license file you are editing.

8

Expiry Warnings

If a license has expired, it is not possible to open an instance of the API

(QABatchWV_Open).

You can use QABatchWV_DataSetInfo to view how long is left before the data

expires.

Evaluations

Evaluation license keys set time limits on the usage of data. To continue using the

product and data after these time limits have been reached, you must purchase a

full license.

To upgrade from an evaluation license to a full license, contact Experian Data

Quality Sales using the contact details provided at the beginning of this guide, or

complete the Purchase Licenses form on http://support.qas.com.When you have

received your new license key from Experian Data Quality, you should enter it in

qalicn.ini.

http://support.qas.com/

9

Installing QAS Batch API

Windows

QAS Batch API has been supplied to you on CD-ROM and comes with an

installation program called setup.exe. When you run setup.exe, the QAS Batch

API libraries and associated files are installed to the location of your choice (the

default is C:\Program Files\Experian\QAS Batch API).

To run the installation program:

1. Insert the QAS Batch API CD into your CD-ROM drive.

2. Select Run... from the Start menu.

3. In the dialog box that appears, type d:\setup, where d is the drive letter for

your CD-ROM drive, and press Enter. Once the installation program starts,

follow the on-screen instructions to install the API.

UNIX

The QAS Batch API image contains both shared object and static library compiles

of QAS Batch API. Copy the contents of the relevant folder from the image to the

location of your choice, for example /opt/qas batch/.

You can choose to install QAS Batch API as a 32-bit or 64-bit version. You should

select the version that is correct for your integration.

When you wish to run your integrated application, you should ensure that the

following files are in the same directory as the application executable:

⚫ country.ini

⚫ qaworld.ini

⚫ qawserve.ini

⚫ qalicn.ini

⚫ qalcl.dat

⚫ static library or shared object of libqabwvcd

⚫ 32-bit or 64-bit shared object of libCorrectA (USA or CAN dataset only)

10

Installing And Updating Data

Once you have installed the program, you can install Experian Data Quality data

to use with QAS Batch API.

To ensure that your data is compatible, all data for a country must be the same

version and should be installed at the same time.

Each dataset has an expiry date and must be updated periodically. Experian Data

Quality provides regular updates of the datasets as and when updated data is

available. Each update should be applied promptly, otherwise the data may expire

and the product will become unusable.

Windows

To install or update data on Windows, we recommend that you use Electronic

Updates, which automatically ensures that your Experian Data Quality products

are using the latest data available. For more information about Electronic

Updates, visit support.qas.com. If you have chosen to use Electronic Updates, see

"Electronic Updates" on page 11.

Alternatively, to install or update data using any data installation disks that you

may have received, follow these steps:

1. Insert the first Experian Data Quality Data CD or DVD into the relevant drive,

click the Start menu and select Run.

2. In the dialog box that appears, type d:\setup, where d is the drive letter for

your CD or DVD drive, and press Enter.

3. Once the installation program starts, follow the on-screen instructions to

install or update your data.

Before you begin the data installation process, you should ensure that you

have received all of the license keys for each dataset you have purchased.

During the installation you are prompted to insert the license key for each

dataset that you want to install.

See "Licenses" on page 7 for more information about licenses.

http://support.qas.com/

11

4. If you have purchased additional datasets (such as Names or Suppression

additional data) or DataPlus sets to enhance your address data, you should

select the relevant data in the Data Setup dialog. Once the address data has

been installed, you will be prompted to install all the additional data that you

have selected.

Electronic Updates

If you have chosen to install or update your data using Electronic Updates, follow

these steps:

1. Install Electronic Updates (if you have not yet done so), following the on-

screen instructions to install and run the EU client.

2. Use the EU client to install and/or update any datasets (including additional

datasets) that you have purchased to use with QAS Batch API.

3. Once you have configured and run the EU client, all future data updates will

automatically be downloaded to your computer.

For more information about how to use Electronic Updates and the EU client, refer

to the Electronic Updates documentation.

This information is only relevant when using GBR data.

NCOA data

According to the terms of your third-party license agreements, once you have

performed an initial clean of your data using QAS Batch API, NCOA Update and

NCOA Suppress data are tied to the machine that QAS Batch API is installed

on.

If you do need to move these datasets to a different machine after you have

performed an initial clean, you should contact Experian Data Quality Technical

Support who will guide you through the process. See page 4 for Technical

Support contact details for your region.

Telephone Preference Service (TPS) and Monthly Pointer data

If you wish to use Telephone Preference Service or Monthly Pointer data, you

must install and use Electronic Updates (EU) to do so, due to the fortnightly

data update cycle.

12

UNIX

Installing New Data

The first time you install a dataset you must do the following:

1. Copy the data files from the data CD / DVD to a suitable location. If your

dataset is supplied on more than one disk, then repeat for each disk,

including any additional datasets associated with your dataset. See "About

Data Files" on page 15 for more information about the data files you require.

2. Navigate to /opt/qasBatch/ (or wherever you installed QAS Batch API) and

open the qawserve.ini configuration file in a text editor such as vi.

3. Under the [QADefault] section add a line to the InstalledData setting,

specifying the location of the data you just copied. The setting is in the format:

InstalledData={dataset identifier},{path}

For example, if you had just copied the GBR dataset to /opt/qasData/gbr/ the

line would read:

InstalledData=GBR,/opt/qasData/gbr

For more information about this setting see page 151.

4. In the same section add at least one line to the DataMappings setting, to

specify the combinations of additional datasets you wish to use. The setting is

in the format:

DataMappings={data mapping identifier},{dataset/group name},

{dataset+additional datasets}

For example, if you had the United Kingdom With Names additional dataset to

enhance your GBR dataset you might add two lines, one without the

additional dataset and one including it:

DataMappings=GBR,United Kingdom,GBR

+GBN,United Kingdom With Names,GBR+GBRNAM

For more information about this setting see page 152.

If you transfer the data files using FTP you must transfer them as binary

files, otherwise the data may be corrupted.

13

5.

If you are installing the USA dataset you must also specify the location of the

supplementary USA QAS Batch data and libraries which are supplied on

separate disks to the USA data. In the same section of qawserve.ini, add the

CorrectADataLocUSA setting and the CorrectAAPILoc setting. For

example:

CorrectADataLocUSA=/opt/qasData/USA

CorrectAApiLoc=/opt/qasData/USA

You do not need to use the CorrectAApiLoc setting if you installed the

supplementary libraries to the same location as your core QAS Batch

API libraries, or to a location specified in your environment variable.

For more information about these settings, see "CorrectAApiLoc" on page 154

and "CorrectADataLocUSA" on page 154.

6.

If you are installing the CAN dataset you must also specify the location of the

supplementary CAN QAS Batch data and library which are supplied on

separate disks to the CAN data. In the same section of qawserve.ini, add the

CorrectADataLocCAN setting and the CorrectAAPILoc setting. For

example:

CorrectADataLocCAN=/opt/qasData/CAN

CorrectAApiLoc=/opt/qasData/CAN

You do not need to use the CorrectAApiLoc setting if you installed the

supplementary library to the same location as your core QAS Batch

API libraries, or to a location specified in your environment variable.

For more information about these settings, see "CorrectAApiLoc" on page 154

and "CorrectADataLocCAN" on page 155.

7. Open the qalicn.ini configuration file in a text editor such as vi. Add all of your

supplied license keys for your purchased Experian Data Quality datasets to

the end of this file. For more information see "Licenses" on page 7.

This information is only relevant when using USA data.

This information is only relevant when using CAN data.

14

Updating Existing Data

To update a previously installed dataset, overwrite your existing files with those

provided on the data update CD / DVD. To ensure that your datasets are

compatible, all data for a country must be the same version and should be

installed at the same time. The supplementary data and libraries for the USA and

CAN datasets must also be copied from the QAS Batch data disks. The following

section details the files which comprise each dataset.

If you transfer the data files using FTP you must transfer them as binary files,

otherwise the data may be corrupted.

15

About Data Files

You have been supplied with at least one dataset. Each dataset that you have

purchased comprises at least three files. The main dataset file has the .dts

extension and is accompanied by index files.

The files you receive for each dataset are:

<dataset identifier>.dts

<dataset identifier>.tpx

<dataset identifier>.zlx

<dataset identifier>.kfx (datasets compatible with the Keyfinder engine only)

<dataset identifier>.zlb (certain datasets only)

The dataset identifiers are three characters long and for most datasets are

derived from the country's ISO code. For example, the UK dataset identifier is

'GBR', and the Australia dataset identifier is 'AUS'. For datasets that do not

represent a particular country's address data, and therefore are not associated

with an ISO code, the dataset identifier is a unique three-character identifier. For

example, the Gazetteer dataset identifier is 'LPG'.

Dataset identifiers are used throughout the API and its documentation as unique

three-character identifiers for datasets.

Additional datasets are available for some datasets. The additional datasets have

the .ads extension and are supplied with index files. The filenames are derived

from the dataset identifier with which they are associated. For example, the

following files comprise GBR Business data:

gbrbus.ads

gbrbus.tpx

gbrbus.zlx

DataPlus sets are also available for some datasets and additional datasets. They

have the .dap extension, and their filenames are derived from the dataset

identifier. For example, the filename for the GBR Government DataPlus set is

gbrgov.dap, and the filename for the AUS Mosaic Code DataPlus set is

ausmos.dap.

16

The USA and CAN datasets require supplementary data and libraries for use in

QAS Batch API. For Windows users, these files are configured automatically by

the Windows installer. UNIX users must copy the data files manually from the

‘Data’ directory of the USA/CAN Batch data disks (along with the UNIX libraries

that are supplied separately), and update their configuration files as described in

"Installing New Data" on page 12.

This information is only relevant when using USA or Canada data.

17

Activating Metered Datasets

A click is the unit of measurement for a metered licence. Depending on how such

a licence is set up, a click may be decremented from a meter when an address is

matched in the dataset, or when data is appended to your matched records. For

Suppression meters, a click may be decremented when an address record is

suppressed or when a Suppression DataPlus flag is returned.

If you purchased a metered dataset (such as a Suppression additional dataset),

you will need to activate these clicks before you can output any cleaning results

from QAS Batch API.

For more information about metered datasets and how to use them, see

"Appendix D: Analysing Costs of Suppression Data" on page 191.

Testing Your API Installation

QAS Batch API is supplied with a simple text-based application written in C and

can be used to verify that you have installed QAS Batch API correctly, and also

demonstrate some of the API functionality. It is not intended to be used as a

commercial application. For Windows 32-bit API installations it is known as

batwv.exe, for Windows 64-bit installations it is known as batwv64.exe, and for

UNIX installations it is known as batwv.

On UNIX, the main library must be accessible as a shared object. To ensure this

is the case, you can register the library with the following steps (you will need to

be logged in as root):

1. Navigate to /opt.

2. Copy libqapwccd.so (the main library) from the /lib directory in your

installation location to /usr/lib.

3. Run ldconfig (or your system's equivalent).

QAS Batch API for Windows is also supplied with additional test harnesses written

in other languages:

Java BatchTestHarness_Java.jar BatchTestHarness64_Java.jar

C#.NET BatchTestHarness_CS.exe BatchTestHarness64_CS.exe

32-bit 64-bit

18

Although these versions are not described in detail in this manual, they can also

be used to verify that you have installed QAS Batch API correctly.

Running The Test Harness

The C test harness enables you to obtain a matching address and match code

from an input address that you type in on the command line.

If you are using Windows, run the test harness from the QAS Batch API installation

directory.

If you are using UNIX, go to the "apps" folder in the directory where the program

files were installed and type ./batwv at the command prompt.

The test harness appears, looking similar to this:

Once you have selected a layout from the list, try typing an address, separating

each part from the next with a comma, and press Enter. For example:

44 Rushton St, Victoria Park, WA 6100

If you want to run either the 32-bit or 64-bit Java test harness on a 64-bit

machine, the loaded Java virtual machine must be the same version as the test

harness. If the virtual machine and the test harness are not the same version,

the test harness will not run successfully.

19

The test harness returns various details, concluding with the matching address (if

there is one).

For example, entering '44 Rushton St, Victoria Park, WA 6100' (with the Australia

dataset) might return this:

The details shown are:

⚫ the address you supplied;

⚫ the return value from the function QABatchWV_Clean (see page 63);

⚫ the generic match code assigned to the address (see page 29);

⚫ the dataset-specific information, which comprises the dataset-specific

information bits and the extended dataset-specific information bits (see the

Data Guide supplied with your data for more information about these

information bits);

⚫ the dataset identifier of the dataset used;

⚫ the postal code;

⚫ the returned address;

⚫ any unused components from the input address.

The supplied address is a duplication of the elements you typed in, while the

returned address is a matched address as it is stored in the dataset.

QABatchWV_Clean returns 0 in this case, indicating that the function was

successful.

20

A match code beginning R913 indicates that:

⚫ the match success letter is R;

⚫ the match confidence level is 9;

⚫ the postal code action indicator is 1;

⚫ and the address action indicator is 3.

Match success letter R means that a full address and postal code has been found,

the 9 means that QAS Batch API is confident that it has found the correct address,

the 1 shows that the postal code has not been changed and the 3 shows that either

a partial or a full address has been returned. For more information see "Address

Match Codes" on page 29.

The output postal code is 6100. The dataset identifier, which is a three-letter code

that identifies the dataset, is AUS.

There are no unused components from the address you typed in.

The QAS Batch API may behave differently, depending on your current

configuration settings.

21

The QAS Batch API

Process

Before QAS Batch API can search on an address, it needs to know what level of

searching to undertake, and how to return any matches that it finds. You specify

these options in the configuration file.

The configuration file contains many settings which govern the basic processing

that QAS Batch API performs and allow you to define options such as the default

dataset, cleaning options, and how the output address should look. The main

configuration file used within the API for these settings is called qaworld.ini. For

more information about configuration see page 147.

How QAS Batch API Matches Addresses

QAS Batch API goes through a complex process when it attempts to match your

address against the dataset(s). Understanding the process helps you to get the

most out of the QAS Batch API.

Matching Keys

If you are using QAS Batch API with the AddressBase® Premium dataset, QAS

Batch API can perform key matching against your input data before carrying out

the address matching process. This can potentially improve the confidence level

of any address matches obtained. Key matching can be carried out against the

following two types of data:

This information is only relevant when using APR data.

22

⚫ Unique Property Reference Numbers (UPRNs);

⚫ Unique Delivery Point Reference Numbers (UDPRNs).

In order to match this information against AddressBase Premium data, you must

first specify which fields in your input data contain UPRNs or UDPRNs. See

"Setting The Input Address Format" on page 170 for information on how to do this.

Once key matching has been completed, QAS Batch API begins the normal

address matching process.

Address Matching

The QAS Batch API process consists of five stages:

⚫ Stage 1: Pre-process address

⚫ Stage 2: Match country

⚫ Stage 3: Match Street, Organisation, PO Box and Place

⚫ Stage 4: Match Premises

⚫ Stage 5: Select Best Match

23

The diagram below summarizes the QAS Batch API process.

Stage 1: Pre-process Address

The first thing QAS Batch API does is attempt to put the input address into a

standard format. The input address has been submitted as a single line, with

address elements separated by commas. For example:

3 Mornington Mews, County Grove, London,SE5

QAS Batch API may return an address as unmatched if the place and street are

matched, but the premises are not matched.

24

QAS Batch API splits this address at the position of each comma so that the

address looks like this:

3 Mornington Mews

County Grove

London

SE5

Stage 2: Match Country

Once it has completed its formatting, QAS Batch API tries to identify the country

that the input address relates to. QAS Batch API does this by matching the

contents of the last two lines against a list of countries, ignoring non-alphabetic

characters.

If a country is identified in the input address, QAS Batch API goes on to verify that

the relevant dataset is installed. If it is not, QAS Batch API will mark the address as

'Country not available' (see "Match Success" on page 30) and stop the search.

If no country is found in the address, then QAS Batch API tries to move on to the

next stage using the default dataset. If no default dataset is set, QAS Batch API

will reject the address as 'Unidentified country' and stop the search.

Stage 3: Match Street, Organisation, PO Box And Place

Depending on the country, QAS Batch API may expand street abbreviations,

which means that all street descriptors such as 'Rd' or 'Ave' are expanded to

'Road' and 'Avenue', so that they match the descriptors in the dataset.

If you have specified that address fields occur on particular input lines, then QAS

Batch API will use these to help decide which elements it can match with.

If you have not made any specifications of this type, QAS Batch API will make

some assumptions, in particular that a place or a postal code will not occur in the

first address field and that street elements will always occur before place

elements. QAS Batch API will make one or more attempts to locate a valid

sequence of street and place combinations in the address. At the same time, if

QAS Batch API can locate PO box or organisation names along with a valid place,

it will take these to be potential valid matches.

QAS Batch API will also break single words out of address lines in order to locate

the best combination of elements for matching.

25

Stage 4: Match Premises

By this stage, QAS Batch API has matched the input address as far as the street.

To find the full verified address it also needs to match the property information.

After matching a place and a street, QAS Batch API compares the property

information in the input address against all the premises in the dataset for that

street. If no match is achieved, the input address is marked as 'partial address

found' (see "Match Success" on page 30).

Stage 5: Select Best Match

QAS Batch API now retrieves the full verified address and assigns it a 'quality'

score by comparing it with the original input address.

During this comparison, QAS Batch API evaluates a number of matching rules

and assigns the match a score. If there is more than one match, this process is

repeated for all the matches. If there are two or more matches that have the

highest score, QAS Batch API marks the input address as either 'Partial address'

or 'Multiple match', depending on the matching rules that were passed.

The Returned Address

QAS Batch API returns matched addresses in the format that you specify. You can

decide which address elements appear on which line, and which elements are

capitalized or abbreviated. QAS Batch API always returns address elements

using the string data type, even when there are fields which may only contain

numeric data.

You define the output address format in the configuration file.

If your addresses contain property information, but the dataset you are cleaning

against does not, QAS Batch API does not alter the property information; it

retains it and returns it. Ensure that the addresses are formatted to your

requirements before you write them back to your database.

26

Retrieving DataPlus Information

DataPlus can provide a wide range of information relating to an address, as a

supplement to the QAS Batch API. Currently, DataPlus information is only

supplied with certain datasets; if you do not have it, skip the rest of this section.

DataPlus information is contained in datasets. Each piece of information relates to

a locality, a postal code, or, when the data requires higher resolution, to the

delivery point (letter box).

DataPlus handles the information in terms of a code and its related description (if

there is one). For example, a dataset containing MOSAIC information might

include one or more demographic details.

DataPlus details can only be viewed once you have selected and displayed a full

address from QAS Batch API. For example, if you have the Australia dataset with

the associated latitude and longitude DataPlus set, and you have configured QAS

Batch API to return DataPlus information, a search on '314 miller st, north sydney,

nsw 2060' might return the following address:

314 Miller Street,

NORTH SYDNEY NSW 2060

-33.8313 151.208

In this example, the latitude and longitude appear beneath the address. If you

want to retrieve DataPlus information with your addresses, you should configure

your address layout so that it contains lines specifically for DataPlus.

See the Data Guide supplied with your dataset for further information on

DataPlus.

Some countries have several versions of an address element (for example, the

Netherlands has NEN, TPG and Official street names). QAS Batch API uses the

version supplied in the input to secure a match and returns the version

configured in the output. For this reason, an address can be verified as correct

even if there appear to be differences between the input and output addresses.

27

USA DataPlus and DPV

One of the requirements of CASS accreditation is that DPV functionality is active

(see "Appendix F: Delivery Point Validation" on page 205). USPS requires all

CASS-certified software to return a +4 code only when the address has been

DPV-confirmed. If an address is not DPV confirmed, a +4 code will not be

returned, and by extension, any DataPlus items you have configured as part of

the address output format may not be returned either.

Using QAS Batch With Suppression Additional
Datasets

In order to achieve the most effective results when using QAS Batch API with

Suppression data, we recommend following these guidelines:

⚫ Before running your input data against Suppression data, carry out a

standard address cleaning session on your data first. If you have purchased

any other additional datasets (for example Names, or Utilities data) these can

also be configured in this initial session.

Running a Suppression session against addresses that have already been

cleaned and verified means that QAS Batch API is more likely to find good

suppression matches.

⚫ Do not run your input data against both Suppression data and other

additional datasets during the same session. A Suppression session should

use only the core country dataset, and your selected Suppression datasets.

Running a Suppression session at the same time as other additional datasets

may prevent QAS Batch API from finding good suppression matches in some

cases.

The recommended workflow for using QAS Batch API with Suppression data is

shown in the diagram below:

This information is only relevant when using USA data.

More DataPlus elements will be returned when using QAS Compatibility

Formatting mode because an additional matching routine is attempted for

addresses that do not DPV-confirm. For more information see the USA Data

Guide.

28

Suppression Workflow

More information about configuring QAS Batch API, including setting up additional

datasets can be found in "QAS Batch API Configuration" on page 147.

29

Address Match Codes

During a QAS Batch API search, the nature of processing and any changes made

to the address are recorded in a match code. The match code is returned as a

result of a call to the function QABatchWV_Clean (see page 63). The first four

characters of the match code provide the following information:

Match Success 1 upper case letter.

This specifies how well QAS Batch API matched

the address.

Match Confidence Level 1 single digit.

This tells you how accurate QAS Batch API thinks

the match is.

Postal Code Action 1 single digit.

This indicates any action that QAS Batch API has

performed on the postcode.

Address Action 1 single digit.

This describes what action has been performed

on the address.

Information Bits 1 eight-digit number provides general match

information, including details of the matching

process and reasons for the confidence level.

These are the Generic Information Bits.

1 sixteen-digit number provides dataset-specific

match information. These are the Extended

Information Bits.

This is what a full match code looks like:

30

For more information about the generic information bits, see "Appendix G:

Generic Information Bits" on page 209. For more information about the dataset-

specific and additional dataset-specific information bits, see the relevant Data

Guide.

Match Success

The letter at the beginning of the match code indicates how successfully QAS

Batch API was able to match your input address to an address in an Experian

Data Quality dataset.

The values of the match success letter are split into two ranges which indicate

specific types of information:

A-D The input address was not processed. The reason for this is

specified by the letter returned.

K-S The input address was processed, and the match quality is

indicated by the letter returned.

The match success letter only indicates what type of matching address has been

found in the data, it does not indicate whether this address is a good match for

your input data. This information is indicated by the "Match Confidence Level"

(see page 34)

If QAS Batch API returns a Q or R match, along with a match confidence level of 9,

you can be confident that it has found the right match.

Match Success Letters A-D

A

Unprocessed

Results could not be returned for the input address. This

reflects an internal processing issue. For example, if DPV

processing has been locked because you encountered a

seed address, then all US addresses will return an A match.

See page 205 for more information about DPV.

Due to restrictions matching against Suppression datasets, all successfully

suppressed records can be considered a confident match, regardless of the

returned match code. The match code refers only to matches against the main

address data or other, non-suppression datasets.

31

B

Blank

This means that QAS Batch API could either find no data in

the input address or too insignificant an amount of data to

return an address.

C

Country not

available

This match letter is returned when your input address

contains a country name and the appropriate dataset is not

installed.

For example, if you do not have the Australia dataset, this

address would return a C match:

7 Speed Avenue, Five Dock NSW 2046, AUSTRALIA

If you want to restrict QAS Batch API's ability to match against

countries, use the CountryRevert configuration setting

(see page 158).

D

Unidentified

country

A match letter of D is assigned to an address record when

QAS Batch API is unable to ascertain the record's country of

origin and no default country has been configured (see the

CountryBase configuration setting on page 156).

Match Success Letters K-S

K

No address or

postcode could

be derived

This match letter is used when QAS Batch API cannot find

any data which matches your input address. This might occur

if the input address does not contain a country name and

does not match anything in the default dataset.

For example, if you processed "42 Durlston Square" against

the GBR dataset, QAS Batch API would return a K match.

This is because QAS Batch API cannot find any matching

street names and has no other information (such as a locality

or postcode) to search on.

L

Postcode found,

but no address

could be derived

This match letter is returned if QAS Batch API derives a valid

postal code from your input address, but no address

information.

32

M

Multiple addresses

found, but no

postcode

QAS Batch API returns this match letter if the input address

matches more than one address in the dataset.

For example, the following address finds four matches in the

GBR dataset:

146 High Street, Cambridge

Because the address exists in the localities of Sawston,

Cottenham, Chesterton and Landbeach, QAS Batch API

cannot determine which is the desired match. As all four

potential matches have different postal codes and no single

postal code can be returned, QAS Batch API marks the

address as an M match.

N

Multiple addresses

found with

postcode

This type of match is returned when QAS Batch API finds

more than one matching address within a postal code. This

is most likely to occur where a country's postal codes cover

large areas, such as in Australia.

For example, this Australian address has two possible

matches, because it exists in the localities of Kingsholme

and Ormeau:

25 Cliff Barrons Rd, QLD, 4208

O

Partial address

found, but no

postcode

In this case QAS Batch API has found a partial address

which matches your input. However, it cannot return a full

postal code with it because the partial address is covered by

more than one postal code. This might occur if your input

address has a missing or invalid property number. QAS

Batch API cannot determine the correct property number and

returns as much of the address as it can.

For example, in the street of this UK address, number 70

does not exist:

70 Glebe Road, Long Ashton, Bristol

As no postal code is included in the input address, QAS

Batch API does not know which of the street's two possible

postal codes to return, and produces this output:

Glebe Road, Long Ashton, Bristol

33

P

Partial address

found with

postcode

QAS Batch API has found a partial address which matches

your input. In addition, either the input postal code was valid,

or QAS Batch API has managed to find a single postal code

for the partial address.

For example, if this Australian address is searched on:

Robertson St, Sherwood

QAS Batch API is able to add a postal code and state code,

but the missing property number prevents it from returning a

full address.

Q This occurs when QAS Batch API finds a full address which

Full address found, matches your input data, but cannot find a full postal code to

but no postcode go with it. This is most likely to happen if a dataset does not

include postal codes for every address.

R

Full address

and postcode

found

In this case, QAS Batch API has made a full match, either by

simply verifying a correct input address, or by locating a full

address from partial input data.

These examples all return R matches:

14 Carnaby St, London
Grimmstr 5, 79848 Bonndorf

Sintelweg 10, 9364 Nuis
19 Meyer Place, Melbourne, Victoria 3000

However, an R match only signifies that a full address and

postal code have been returned; it does not necessarily

mean that the address is the one you want. You can gauge

the likelihood of a correct match from the match confidence

level.

34

S

Address matched

to one or more

Suppression

datasets

This match code is only applicable when QAS Batch API has

matched an address against GBR or AUS Suppression data.

When this match code is returned, all returned address

information and information bits will be cleared other than

the suppression information bit.

If one or more DataPlus elements are configured in the

output layout, this match code is no longer returned, and

instead all address and suppression infobits are returned,

including the suppression information bit.

Match Confidence Level

The first digit in the match code indicates how confident QAS Batch API is about

the match it has returned.

There are three levels of confidence: low, intermediate and high. As the

completeness of the returned address is determined by the match success letter,

QAS Batch API could return an R match with low confidence, indicating that

although it has found a complete and correct address, it is not sure that it is the

same address as the input.

Confidence is determined by the matching rules. Low confidence indicates that

the essential matching rules were not satisfied. Intermediate confidence shows

that the less important rules were not satisfied, or another check failed (for

example, the input address is not in the expected order).

0: Low Confidence

QAS Batch API sets the confidence level to 0 if it finds a match which differs

considerably from the input address. For example, take this UK address:

Rich & Carr, LE1 9GX

Due to restrictions matching against Suppression

datasets, all successfully suppressed records can be

considered a confident match, regardless of the returned

match code. The match code refers only to matches

against the PAF or other, non-suppression datasets.

35

QAS Batch API returns its nearest guess (Rich & Carr, PO Box 15, Leicester, LE1

9GX). As this is a full address, it is given an R match success letter. However, as

the input address did not specify PO Box details, QAS Batch API is not confident

that this is the right match.

5: Intermediate Confidence

Confidence level 5 is returned when QAS Batch API is reasonably sure that it has

found the right match. This might occur if the input address is slightly inaccurate.

Consider this UK input address:

Churchill Green House, Churchill Green, Churchill, Winscombe,

Avon, BS25 5QH

In this example, the building name is incorrect (it should be Churchill House).

However, QAS Batch API is able to find the correct address. Only the variance in

building name prevents a high confidence match.

9: High Confidence

QAS Batch API returns a 9 when it is sure that the output address matches the

input data. This happens when an input address is fully accurate, or when partial

address data is detailed enough (for example, exact property number, street and

locality) to have the remaining address details appended. Consider this UK input

address:

Castle Gayer Cottage,Leys Lane,Marazion,Cornwall,TR17 0AQ

In this example, the address is spelt correctly and is found in the data exactly as

typed. A High Confidence match is returned.

Postal Code Action Indicator

The second digit in the match code signifies the action that QAS Batch API has

performed on the postal code.

There are four possible values for this digit:

If a record has the confidence reduced to Intermediate for more than one

reason, this does not reduce it further, and it remains as Intermediate

confidence.

36

3 The existing postal code has been corrected.

2 A new postal code has been added.

1 The existing postal code was already correct.

0 No action was taken.

Address Action Indicator

The third digit in the match code tells you what QAS Batch API has done to the

address.

There are three possible values for this digit:

3 Part of or a whole address was returned. The amount of address is

signified by the match success letter.

2 The existing address was enhanced. No significant information has been

removed, but some information has been added.

0 No action was taken as the supplied address was not matched.

Information Bits

The hexadecimal information bits provide details of each match made by QAS

Batch API. They consist of:

⚫ an eight-digit number which provides generic information;

⚫ a sixteen-digit number which provides extended information. This information

is dataset specific.

Generic Information Bits

The generic information bits provide detailed information on how well an address

match conforms to the QAS Batch API matching rules. See "Matching Rules" on

page 38 for more information.

Value Description

Value Description

37

For a full list see "Appendix G: Generic Information Bits" on page 209.

Extended Information Bits

Extended information bits are dataset specific. They are added together in the

same way as generic information bits. Refer to the Data Guide supplied with your

data for further information about dataset-specific information bits.

38

Matching Rules

This section provides a guide to the considerations that take place when QAS

Batch API is matching addresses. There are a number of predefined rules

governing the results that the QAS Batch API produces. These are listed below:

⚫ Generic matching rules

⚫ Essential matching rules

⚫ Preferred matching rules

⚫ Close matching rules

⚫ Acceptance matching rules

⚫ Further rules

⚫ Dataset-specific matching rules

Information on which matching rules have been applied to an address is supplied

using information bits.

Generic Matching Rules

This core set of rules applies to the matching process for all countries:

⚫ Elements must roughly occur in the expected predefined order (the order is

defined in each country's data files).

⚫ Any numbers appearing before the place elements in an input address

should be matched.

⚫ Numbers should associate correctly with accompanying elements. For

example, in a UK address the building number is expected before the street

name.

⚫ At least one place element should be found in the input address.

39

If these rules are not satisfied, match confidence will be reduced to intermediate

unless the rule is specifically suppressed in the particular country's dataset. For

example, if a place is not supplied for a UK address, the match confidence will not

be reduced if a match can be made by using the supplied postcode. Normally,

postal codes represent larger areas, and confidence would be reduced in those

circumstances. Regardless of any change in match confidence, the information

bits set within the generic match code for a returned address indicate the rules

that have failed.

Essential Matching Rules

These rules state the criteria which must be satisfied. If one of these rules is not

met, a match of low confidence will be returned. These rules include conditions

such as:

⚫ There must be an input element defining the location of the address (a town,

a postal code, etc.).

⚫ There must be an element defining the property information.

Preferred Matching Rules

These rules are criteria which should ideally be satisfied. These will be slightly

stricter than the Essential rules, for example:

⚫ A PO Box number must be matched if one exists in the dataset.

⚫ There must be some form of match with a street name if one exists in the

dataset.

⚫ The postal code must match if none of the place elements in the dataset has

matched.

If any one of these rules is not satisfied, confidence in the address matched will

be intermediate at best.

Close Matching Rules

This is an additional set of rules which affect the confidence of a match to the

address under consideration. Strictness is roughly equivalent to the Preferred

rules, for example:

40

⚫ Both the PO Box number and the corresponding place must match.

⚫ At least one of the street descriptors and the locality elements must match.

⚫ The sub-premises address element must make an exact match.

If one of these rules is not satisfied, confidence in the address matched will be

intermediate at best.

Acceptance Matching Rules

This is a set of rules applied by QAS Batch API at its address acceptance stage,

just before a final address is returned. These rules are only defined for some

datasets and specify the strictest final criteria that an address match must satisfy.

These rules are only used when confidence has not previously been reduced for

any other reason. Example rules are:

⚫ It was not necessary to change more than one character in the supplied street

name to obtain a match.

⚫ All of the supplied multiple place and postcode-level elements matched.

If any one of these rules fails, confidence will be reduced to intermediate.

Further Rules

There is a further set of rules which are inherent to the code for all countries.

These rules are dataset independent, and all will cause the confidence to be

reduced to Intermediate if not satisfied.

⚫ Elements must occur in a predefined expected order (the order is defined in

each dataset)

⚫ All numbers appearing before the place elements in the input address must

be matched

⚫ Numbers must associate correctly with the accompanying elements

⚫ At least one place element must be found in the input address.

The information bits returned with an address indicate the rules that have been

enforced.

41

Dataset-Specific Matching Rules

Unmatched Input Text

When using one of the datasets listed above, QAS Batch API will downgrade

match success scores and confidence levels if it is unable to match some text in

the input address. This is designed to prevent misleading high confidence

matches being made to address records that share only a certain amount of text

in common with the input address.

Consider using QAS Batch API with United Kingdom or AddressBase® Premium

data with the following input address:

Quick and Speedy Dry Cleaning Ltd, 2-3 Clapham Common North Side,

London, SW4 0QL

Part of that input address would match to part of the following, postally correct

address:

Experian Ltd, George West House

2-3 Clapham Common North Side

London

SW4 0QL

When using other datasets, the equivalent result would be a full address match

with intermediate confidence. But when using one of the datasets listed above,

the match is not used due to the amount of unmatched input text. Instead we

receive a result similar to this:

George West House

2-3 Clapham Common North Side

London

SW4 0QL

The result is a partial address match which only includes elements from the

input address that can be matched with high confidence.

This information is only relevant when using GBR or APR data.

42

Additional Dataset-Specific Matching Rules

Since QAS Batch API is a multi-country address matching product, additional

rules are tailored for each dataset and are embedded in the data.

43

API Function Reference

This section introduces the QAS Batch API functions. It consists of the following

sections:

⚫ Data Types

This section explains the QAS-specific data types that define the parameters

that the functions take.

⚫ Multithreading Example

This section gives information about running several 'threads' of the

application simultaneously.

⚫ Pseudocode Example

This section gives a programming language independent example of a QAS

Batch API implementation.

⚫ API Functions

This section details the API functions in alphabetical order and lists them in

groups according to the type of function. It also provides a list of replaced

functions.

Data Types

There are a few QAS-specific data types which appear in the API and need some

explanation. These types define the parameters that the functions take and values

they return. They can be split into three categories:

⚫ the values that are returned by the functions;

⚫ the parameters that go into the functions;

⚫ the parameters you get out of the functions.

44

Equivalent C data types are shown, but additional type modifiers are applied for

certain environments, such as Windows.

Function Return Values

INTRET integer int

LONGRET long integer long

VOIDRET no return value void

Parameters (Input)

STRVAL string char *

INTVAL integer int

LONGVAL long integer long

VOIDARG no arguments void

Parameters (Output)

STRREF string char *

INTREF integer int *

LONGREF long integer long *

QAS Batch API data type Description Equivalent C data type

QAS Batch API data type Description Equivalent C data type

QAS Batch API data type Description Equivalent C data type

45

Calling Functions From Languages Other Than C

While C is the language most commonly used when working with these API

functions, it is perfectly possible to work in other programming environments.

However, there are a few points which you should note. These are:

⚫ Passing by Value or by Reference;

⚫ NULL Termination;

⚫ Padding.

Passing By Value Or By Reference

In normal C programming, function parameters can be passed either by value or

by reference.

You must pass a parameter in the way the function expects you to pass it. If you

pass a parameter by value when the function is expecting it to be passed by

reference, then this might crash your program and will certainly produce incorrect

results.

⚫ Strings are always passed by reference, whether they are input or output

parameters.

⚫ Numbers are passed by value when they are inputs to the function. They are

passed by reference when they are outputs from the function.

NULL Termination

QAS Batch API is written in the C programming language. In C, all strings are

expected to be terminated with a NULL. The NULL character is the absolute

character 0 (zero), not ASCII '0'.

For the QAS Batch API functions, all parameters of type STRVAL must be NULL

terminated. Furthermore, all return parameters of type STRREF will be NULL

terminated.

In BASIC, for instance, string termination can be achieved by appending the

NULL characters to all the strings, as in this example:

MyString$ = "Hello" + Chr$(0)

46

After an API function has returned a string, it might be necessary to strip off the

NULL character if it cannot be handled by the calling language.

In BASIC this could be achieved as follows:

nullOffset=INSTR(retBuffer$, CHR$(0))

IF nullOffset>0 THEN retBuffer$=LEFT$(retBuffer$, nullOffset -

1)

Padding

When an API function returns a result, it writes a NULL-terminated result string

into a buffer. You are responsible for creating this buffer. You must ensure that it is

big enough to hold any string which the function is likely to return.

Consider, for example, the programming language BASIC. In BASIC, strings are

not normally stored in fixed length memory blocks. Rather, they occupy only the

minimum amount of memory needed to store their value, which changes as the

string changes.

Therefore, before you pass a string into a function you must first 'pad' it out. This

means adding extra characters to the string in order to force the system into

allocating enough memory to hold any possible return string.

In BASIC you might pad a string with two hundred '+' characters, like this:

retBuffer$ = STRING$(200, "+")

Alternatively, you could create a string with two hundred space characters like

this:

retBuffer$ = SPACE$(200)

Visual BASIC for Windows automatically ends all strings with a NULL

character, so performing this termination might not be necessary.

47

Example Of Data Types

The example below uses the function QABatchWV_DataSetInfo.

This is how the function prototype looks in the documentation:

INTRET QABatchWV_DataSetInfo

(INTVAL viHandle,

STRVAL vsIsoCode,

INTREF riDaysLeft,

INTREF riDataDaysLeft

INTREF riLicenceDaysLeft

STRREF rsVersion,

INTVAL viVerLength,

STRREF rsCopyright,

INTVAL viCopyrightLength);

The parameters viHandle and viVerLength are inputs to the function (in the form

of integers) and thus are passed by value. The parameter rsVersion is an output

parameter (in the form of a string), and consequently it is passed by reference.

Similarly, the parameter riDaysLeft is also passed by reference as it is output by

the function in the form of an integer.

In addition, QABatchWV_DataSetInfo returns a status value which indicates

either the successful execution of the function, or else failure - via an error code.

This function can be written in native C as:

int QABatchWV_DataSetInfo

(int viHandle,

char *vsIsoCode,

int *riDaysLeft,

int *riDataDaysLeft,

int *riLicenceDaysLeft,

char *rsVersion,

int viVerLength,

char *rsCopyright,

int viCopyrightLength);

48

On 32-bit system, Visual BASIC for Windows would declare this function as:

Declare Function QABatchWV_DataSetInfo Lib "QABWVED.DLL"

(ByRef viHandle As Long,

ByRef vsIsoCode As String,

ByRef riDaysLeft As Long,

ByRef riDataDaysLeft As Long,

ByRef riLicenceDaysLeft As Long,

ByRef rsVersion As String,

ByRef viVerLength As Long,

ByRef rsCopyright As String,

ByRef viCopyrightLength As Long)

As Long

On 64-bit system, Visual BASIC for Windows would declare this function as:

Declare Function QABatchWV_DataSetInfo Lib "QABWVGD.DLL"

(ByRef viHandle As Long,

ByRef vsIsoCode As String,

ByRef riDaysLeft As Long,

ByRef riDataDaysLeft As Long,

ByRef riLicenceDaysLeft As Long,

ByRef rsVersion As String,

ByRef viVerLength As Long,

ByRef rsCopyright As String,

ByRef viCopyrightLength As Long)

As Long

Multithreaded Integrations

Multithreading is the ability of an application to maintain several execution

'threads' of the same program in memory. This is a highly efficient method that

may be employed by an application to perform several concurrent tasks with the

minimum duplication of system resources.

It is recommended that multithreading is not implemented for QAS Batch

API integrations intended for USA address cleaning only. For more information,

see Multithreading Considerations.

49

QAS Batch API supports up to 32 separate API instance handles (see

QABatchWV_Open), each with up to 8 related search handles (see

QABatchWV_Clean). Attempting to use any more threads or instances will cause

QAS Batch API to return an error.

QAS Batch API uses additional RAM for each API instance and search handle

used. The amount required varies depending on which countries and datasets

you are using. You will need to ensure you have enough available memory to use

your required number of API instance handles and related search handles. If

there is insufficient memory available, QAS Batch API will return an ‘out of

memory’ error. To remedy this, you will need to reduce the number of instance

handles or search handles until this error is no longer returned. Note that if you

are using the 32-bit version of QAS Batch API, the operating system will limit the

amount of RAM to a maximum of 4GB per application.

When using QAS Batch API with more than one execution thread, there are

limitations in using the handles issued by the API. It is currently the integrator's

responsibility to enforce these rules, and instability or incorrect results may occur

if this advice is ignored.

1. API Instance Handles

You may use QABatchWV_Clean simultaneously with multiple threads and

the same API instance handle. Any other QAS Batch API function that accepts

an API instance handle may only be used by one thread for each API

instance handle at any one time.

2. Search Handles

Any search handle may only be used by one thread at any one time.

Pseudocode Example Of QAS Batch API

This section provides a conceptual overview of how a program using the QAS

Batch API works. The pseudocode used is programming language independent.

The example below uses many of the QAS Batch API functions, so that you can

see how they work together. In practice, however, you will not need to use every

function.

The pseudocode does not include all of the system functions. When using the API

within your application, you will probably want to use the function

QAErrorMessage after every function call in case an error occurs.

50

The conventions within the pseudocode are as follows:

/* Comment */ Italic text between asterisks and forward

slashes denotes a comment.

[QABatchWV_DataSetInfo] The functions which relate to each part of the

pseudocode appear in bold type on the right

hand side of the page.

[QABatchWV_Open (Close)] Some API functions are 'paired', i.e. when a

function is called, its pair must also be called at

some point. When a paired function is used in

the pseudocode, its pair appears in brackets

directly after the function name.

Pseudocode Listing

/* Before calling any function in the QAS Batch API , you must initialize it with

QABatchWV_Startup. If this function is called successfully, you can move on

to other functions. */

Initialise API [QABatchWV_Startup

(Shutdown)]

If initialisation failed

get textual description of error [QAErrorMessage]

display error

shut down API [QABatchWV_Shutdown]

exit procedure

end if

/* Once the API is initialized, you can either call the non-search related

functions, or open a search session. In this case, the program gets a list of

available layouts and asks the user to select one. */

Get number of available layouts [QABatchWV_LayoutCount]

for each layout

retrieve layout name [QABatchWV_GetLayout]

display layout name

end for

Ask user to select one of displayed layouts

/* A layout contains information such as the available datasets, the default

dataset, and the output address format. Now that the user has chosen a

layout, the program moves on to open an instance of the API, in order to

perform searches. */

Convention Meaning

51

Open an instance of the API [QABatchWV_Open

(Close)]

/* The open might fail for various reasons. The most common reason is that a

specified dataset is not installed. */

If open failed

get textual description of error [QAErrorMessage]

display error

close API instance [QABatchWV_Close]

shut down API [QABatchWV_ShutDown]

exit procedure

end if

/* You can open multiple QAS Batch API instances as required, but you must

ensure that each instance is closed with QABatchWV_Close before calling

QABatchWV_ShutDown. */

Repeat while there are more searches to perform

 /* The following section is only required where USA specific Delivery

Point Validation functionality is active: */

If USA DPV component is locked [QABatchWV_DPVState]

get DPV lock code length [QABatchWV_

DPVGetCodeLength]

get DPV lock code [QABatchWV_DPVGetCode]

display lock code

Ask user for DPV unlock key

submit DPV unlock key [QABatchWV_DPVSetKey]

end if

/* End of USA-specific pseudocode*/

/* The program is now ready to perform address searches. The address must

be supplied to the search function, preferably with each address element

separated by a comma. Where the address comes from is up to the user: it

could be typed in manually, read from a database, or supplied by another

program. */

get input address

perform a search [QABatchWV_Clean

(EndSearch)]

52

/* On completion of a search, the following information is returned: a 28-

character match code, a postal code (if successfully matched), and a dataset

identifier indicating which dataset the address was matched against. What

happens next depends on how you want to use this information. You could

accept just the postal code, the complete matched postal address or nothing.

The decision you make will almost certainly be based on the match code. For

this example, the program assumes you wish to have the full matched postal

addresses returned for 'R' and 'Q' match types with a confidence level of 9. In

addition, for 'P' and 'N' match types that have a confidence level of 5 or 9, you

wish to accept just the postal code. */

if match success letter = 'R' or 'Q' and confidence level

= 9

/* With an R or Q match code, you are happy to take the full address.

Therefore, you find out how many lines are in this address and read each line

one at a time. */

count lines in matched address [QABatchWV_

FormattedLineCount]

for each line in the matched

address

retrieve address line [QABatchWV_

GetFormattedLine]

end for

/* Now you do something with this matched address. This could be storing it

in a database or just displaying it on screen. This program does the latter. */

Display retrieved address

Else if match success letter = 'P' or 'N' and confidence

level = 9 or 5

/* In this case, you are only happy to accept the postal code returned by the

search function. */

display returned postcode

Else

display message "No acceptable match"

end if

/* You have done the search and processed the results. You now need to

clear the search results, ready for the next search. */

free resources used by search [QABatchWV_EndSearch]

 /* The following section is only required where USA-specific Delivery

Point Validation functionality is active: */

If USA additional dataset-specific information bits

0x00000002 (DPV Disabled) or 0x00000004 (DPV seed

address) set for match

53

get DPV lock code length [QABatchWV_

DPVGetCodeLength]

get DPV lock code [QABatchWV_DPVGetCode]

display lock code

Ask user for DPV unlock key

submit DPV unlock key [QABatchWV_DPVSetKey]

end if

/* End of USA-specific pseudocode /*

/* When you require no more searches, you need to close this instance of the

API and shut down in order to exit cleanly. */

end repeat

Close instance of API [QABatchWV_Close]

Shut down API [QABatchWV_Shutdown]

54

QAS Batch API Functions

This section contains an alphabetical listing of the API functions. For each

function there is a brief explanation of what it does, followed by its prototype,

parameters, return value and any comments on its functionality.

The functions can be loosely split into the following groups:

⚫ general functions, which open and close the API and provide program

information

⚫ system functions, covering the whole library system to handle errors and

usage details

⚫ search functions, which send the input addresses to the API and optionally

provide feedback

⚫ retrieval functions, which return the number and contents of formatted and

unused address lines

⚫ USA-specific DPV functions (see "Appendix F: Delivery Point Validation" on

page 205 for more information).

⚫ suppression-specific functions (refer to the Australia With Suppression

Additional Data Guide or the United Kingdom With Suppression Additional

Data Guide for more information about Suppression).

There is also a list of replaced functions, for reference by users of previous

versions of QAS Batch API.

General Functions

These functions open and close the API and provide program information.

QABatchWV_Startup page 135 Initialises the API.

QABatchWV_Shutdown page 134 Closes down the API.

QABatchWV_LayoutCount page 120 Retrieves the number of

available configuration layouts.

QABatchWV_GetLayout page 111 Retrieves the name of a

configuration layout.

QABatchWV_ChangeLayout page 61 Changes the layout to a custom

one.

QABatchWV_Open page 129 Opens an instance of the API.

QABatchWV_Close page 66 Closes an instance of the API.

55

QABatchWV_CountryCount page 78 Returns the number of available

datasets.

QABatchWV_GetCountry page 98 Returns the name of a dataset.

QABatchWV_DataSetInfo page 82 Returns details of a dataset.

QABatchWV_DataSetCount page 80 Retrieves the number of

DataPlus sets, additional

datasets and keyfinder sets that

are associated with a dataset.

QABatchWV_GetDataSet page 100 Retrieves the DataPlus sets,

additional datasets and

keyfinder sets for a dataset.

QABatchWV_LicenceInfoCount page 127 Returns the number of lines of

licensing information available

for a specified dataset.

QABatchWV_GetLicenceInfo page 113 Returns a specified line of

licensing information.

QABatchWV_GetDPFieldCount page 102 Retrieves the number of

DataPlus fields that are

associated with a given

DataPlus or Additional dataset.

QABatchWV_GetDPFieldName page 107 Retrieves the code and name

for a specific DataPlus field for a

dataset.

QABatchWV_GetDPFieldInfo page 104 Retrieves information for a

specific DataPlus field for a

dataset.

System Functions

The QAS Batch API also includes four low-level system functions, which cover the

whole library system and are common across all QAS product APIs.

QAErrorMessage page 142 Expands a numeric error code

into a simple text explanation of

that error.

QAErrorHistory page 139 Provides more detailed

information about an error.

QAErrorLevel page 141 Indicates the severity of an

error and whether you should

act on it.

56

QASystemInfo page 143 Lists system usage details,

such as what resources the API

has taken from your operating

system.

Search Functions

These functions send the input addresses to the API and return results, and free

resources used in the search.

QABatchWV_Clean page 63 Performs a search on an input

address.

QABatchWV_EndSearch page 92 Frees resources used by a

search.

Retrieval Functions

These functions return the number and contents of formatted and unused address

lines.

QABatchWV_LayoutLineCount page 122 Returns the number of address

lines available in the current

address layout.

QABatchWV_LayoutLineElements page 124 Returns a description of the

elements fixed to a particular line

of the address layout.

QABatchWV_FormattedLineCount page 94 Returns the number of formatted

lines that a search has resulted

in.

QABatchWV_GetFormattedLine page 109 Retrieves a single address line.

QABatchWV_UnusedLineCount page 137 Returns the number of unused

lines from the input address.

QABatchWV_GetUnusedInput page 117 Retrieves an unused address

line.

QABatchWV_GetMatchInfo page 115 Retrieves detailed match

information.

USA-Specific DPV Functions

This information is only relevant when using USA data.

57

The QAS Batch API includes various functions that are specific to the DPV system.

You only need to integrate these functions if you do not intend to use the

DPV Unlock Utility supplied with QAS Batch API:

QABatchWV_DPVGetCode page 84 Returns a DPV lock code when a

'seed' address has been

encountered.

QABatchWV_DPVGetCodeLength page 86 Returns the length of the DPV

lock code when a 'seed' address

has been encountered.

QABatchWV_DPVGetInfo page 87 Returns the information about the

DPV 'seed' address which is

required by the USPS to issue an

unlock key.

QABatchWV_DPVSetKey page 89 Allows an unlock key to be set

where DPV functionality is

disabled.

QABatchWV_DPVState page 90 Determines the state of the DPV

system.

Suppression-Specific Functions

The QAS Batch API includes eight functions that are specific to the use of

Suppression data. If you are using QAS Batch API with Suppression data for the

first time, Experian Data Quality recommends that you integrate these functions:

QABatchWV_GetAuditCode page

96

QABatchWV_CompareAuditCode page

68

QABatchWV_CounterOpen page

72

QABatchWV_CounterReport page

74

Extracts a text-based audit code

from the counters file on the disk

where QAS Batch API With

Suppression is installed.

Compares the number of clicks

used between two audit codes.

Opens a counter tied to the

specified instance of QAS Batch.

Creates a report on click usage and

address cleaning since the counter

was opened.

This information is only relevant when using GBR or AUS data with

additional Suppression data.

58

QABatchWV_

CounterReportLength

page

76

Returns, in bytes, the size that the

XML report would be if created.

QABatchWV_CounterClose page

70

QABatchWV_ApplyUpdateCode page

59

QABatchWV_RunMode page

132

Closes an open counter by handle.

Populates a counters file with post-

pay meters for each supported

Suppression set.

Switches QAS Batch in or out of

Estimate mode.

Replaced Functions

These functions should no longer be used by your application, although the QAS

Batch API retains them for backwards compatibility.

QABatchWV_Search See QABatchWV_Clean on page 63 for

the replacement function.

QABatchWV_GetUnusedLine See QABatchWV_GetUnusedInput on

page 117 for the replacement function.

QABatchWV_DataInfo See QABatchWV_DataSetInfo on page 82

for the replacement function.

QABatchWV_GetLayoutLine See QABatchWV_LayoutLineElements

on page 124 for the replacement function.

Suppression data is only compatible with QAS Batch API version 6.10 and

later or 7.05 and later.

59

QABatchWV_ApplyUpdateCode

Populates a counters file with post-pay meters for each supported Suppression

set. May also be used if the existing counters file has become corrupted or to add

extra Suppression DataPlus sets.

Pre-call Conditions

The API must be initialized. No specific instances of the API need to be running.

Prototype

INTRET QABatchWV_ApplyUpdateCode

(STRVAL vsUpdateCode);

Parameters

vsUpdateCode String containing counter update code.

Return Values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Argument Explanation

60

Invalid copy

control code:

The update code that has been entered is incorrect. Check

that the code you entered is identical to the one that you were

supplied with by Experian Data Quality, and re-enter if

necessary. If the error persists, contact Experian Data Quality

Technical Support.

Related Functions:

QABatchWV_GetAuditCode

61

QABatchWV_ChangeLayout

Changes the layout to a custom one, provided as an argument. Also changes the

ADS list. The new layout and ADS list are provided by using strings rather than

sections in the .ini file. The country of the new layout cannot be changed by this

function.

Pre-call conditions

The API must be initialized, and a specific instance should have been started with

QABatchWV_Open.

Prototype

INTRET QABatchWV_ChangeLayout

(INTVAL viHandle,

STRVAL vsLayout,

STRVAL vsADSList);

Parameters

viHandle Handle for this instance of the API.

vsLayout String containing new layout (with '\n' at the end of each line).

"!" means leave the layout unchanged.

vsADSList List of ADS sets (comma-separated string).

"!" means leave the list of ADS sets unchanged.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Start-up must be successfully called prior to this function.

Argument Explanation

62

Bad handle: The handle passed to the parameter viHandle is not

valid. QABatchWV_Open must be successfully called

prior to this function, and the handle returned in

viHandle should be used.

Format error: The layout or ADS list was in incorrect format.

Different country: The country of the layout was different than the current

one.

Related Functions:

QABatchWV_GetLayout

QABatchWV_LayoutCount

63

QABatchWV_Clean

Performs a search on the specified input address.

Pre-call conditions

The API must be initialized, and a specific instance should have been started with

QABatchWV_Open.

Prototype

INTRET QABatchWV_Clean

(INTVAL viHandle,

STRVAL vsSearch,

INTREF riSearchHandle,

STRREF rsPostcode,

INTVAL viPostcodeLength,

STRREF rsIsoCode,

STRREF rsReturnCode,

INTVAL viReturnLength);

Parameters

viHandle Handle for this instance of the API.

vsSearch Search string.

riSearchHandle Handle returned by search.

rsPostcode Postal code returned from search.

viPostcodeLength Maximum length of buffer to receive returned postal code.

rsIsoCode Dataset identifier.

rsReturnCode Match code brought back for the input address.

viReturnLength Maximum length of buffer to receive match code.

Return values

Either: 0 if call successful

Or: negative error code

Argument Explanation

64

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be

used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

Call pending: QABatchWV_Clean has been called too many times with

the specified handle. Ensure that QABatchWV_EndSearch

is called at the end of each search once the results have

been returned.

Invalid input item: There is a mistake in the input specification passed to

QABatchWV_Open (see InputLineCount and

InputLineN).

Comments

When you call QABatchWV_Clean with an input address, the search string

should be comma-separated so that QAS Batch API can distinguish between

address elements. For example:

15 Stoke Way, Edgbaston, Birmingham

25 Tattersalls Lane, Melbourne 3000

This function call passes back four values:

⚫ Search handle. This is used to retrieve results pertaining to this search, with

the functions QABatchWV_GetFormattedLine, and QABatchWV_

GetUnusedInput. This parameter should be set to NULL if you do not want to

use search handles.

⚫ The Match code. This indicates how successfully QAS Batch API has matched

your input address.

⚫ Postal code. If QAS Batch API has found a valid postal code in your input

address, or has added a postal code to the address, it is returned in this field.

65

⚫ Dataset identifier. This is the three-character alpha-numeric code that

identifies a particular dataset. The code will be that of your default dataset,

unless QAS Batch API has detected a different country name in the input

address. QAS Batch API will return the dataset identifier for that country name

even if the dataset is unavailable. QAS Batch API will only return a country

name for unmatched addresses if you set a default dataset.

A maximum of eight searches can be submitted at a time to each handle of the

API. If any more than eight are submitted simultaneously, an error will be

returned.

Related Functions:

QABatchWV_GetFormattedLine

QABatchWV_GetUnusedInput

QABatchWV_EndSearch

66

QABatchWV_Close

Closes down this instance of the API.

Pre-call conditions

An instance of the API has been initialized and been opened with QABatchWV_

Open, and no searches are in progress.

Prototype

INTRET QABatchWV_Close

(INTVAL viHandle);

Parameters

viHandle Handle for this instance of the API.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

Argument Explanation

67

Comments

The error qaerr_CALLPENDING will be returned if this instance of the API has a

search in progress.

Related Functions:

QABatchWV_Open

68

QABatchWV_CompareAuditCode

Compares two previously returned audit codes generated using QABatchWV_

GetAuditCode. An XML report is returned into the specified buffer.

Pre-call Conditions

The API must be initialized, and as specific instance should have been started

with QABatchWV_Open.

Prototype

INTRET QABatchWV_CompareAuditCode

(INTVAL viHandle,

STRVAL vsAudit1,

STRVAL vsAudit2,

STRREF rsXmlReport,

INTVAL viXmlReportLength);

Parameters

viHandle Handle for this instance of the API.

vsAudit1 An audit code created by QABatchWV_GetAuditCode

vsAudit2 An audit code created by QABatchWV_GetAuditCode

rsXmlReport Returns the XML report into the specified buffer.

viXmlReportLength Maximum length of buffer to receive returned XML report.

Return values

Either: 0 if call successful

Or: negative error code

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Argument Explanation

69

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be

used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

More Clicks

Needed:

If less than 10 clicks have been deducted since the first

audit code was generated, the error qaerr_

MORECLICKSNEEDED will be returned. See "Appendix A:

Error Code Listing" on page 179 for more information.

Comments

The two audit codes being compared must have both been created using the

QAS Batch installation that this function is being called from.

Related Functions:

QABatchWV_GetAuditCode

70

QABatchWV_CounterClose

Closes an active counter handle, removing any stored statistics.

Pre-call Conditions

The API must be initialized, and a specific instance should have been started with

QABatchWV_Open. A counter must have been initialized using QABatchWV_

CounterOpen.

Prototype

INTRET QABatchWV_CounterClose

(INTVAL viCounterHandle);

Parameters

viCounterHandle Handle for this instance of the counter.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viCounterHandle is not

valid. QABatchWV_CounterOpen must be successfully

called prior to this function, and the handle returned in

riCounterHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Argument Explanation

71

Comments

Any counter report that is required must be retrieved before the counter is closed

as all recorded statistics are deleted upon closure.

Related Functions:

QABatchWV_CounterOpen

QABatchWV_CounterReport

QABatchWV_CounterReportLength

72

QABatchWV_CounterOpen

Opens a new counter instance tied to the QAS Batch API instance supplied in

viHandle.

Pre-call Conditions

The API must be initialized, and a specific instance should have been started with

QABatchWV_Open.

Prototype

INTRET QABatchWV_CounterOpen

(INTVAL viHandle,

INTREF riCounterHandle);

Parameters

viHandle Handle for this instance of the API.

riCounterHandle Handle for this instance of the counter.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be

used.

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Argument Explanation

73

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

Invalid input item: There is a mistake in the input specification passed to

QABatchWV_Open (see InputLineCount and

InputLineN).

Comments

If viHandle is set to -1, the counter will count transactions from all open instances

of the QAS Batch API.

A counter tied to an instance of the QAS Batch API will be closed automatically if

the instance is closed.

Related Functions:

QABatchWV_CounterClose

QABatchWV_CounterReport

QABatchWV_CounterReportLength

74

QABatchWV_CounterReport

Returns an XML report of the records cleaned, and clicks used since the counter

was opened (see QABatchWV_CounterOpen)

Pre-call Conditions

The API must be initialized, and a specific instance should have been started with

QABatchWV_Open. A counter should also have been opened using

QABatchWV_CounterOpen.

Prototype

INTRET QABatchWV_CounterReport

(INTVAL viCounterHandle,

STRREF rsXmlReport,

INTVAL viXmlReportLength);

Parameters

viCounterHandle Handle for this instance of the counter.

rsXmlReport Returns the XML report into a specified buffer.

viXmlReportLength Maximum length of buffer to receive returned XML report.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Argument Explanation

75

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be

used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

Comments

Though click information will not be returned if less than ten clicks have been

used since the counter was created (or since the last counter report was run),

match information will always be returned.

The XML report will be returned into the specified buffer.

Related Functions:

QABatchWV_CounterOpen

QABatchWV_CounterReportLength

QABatchWV_CounterClose

76

QABatchWV_CounterReportLength

Returns the length of the XML counter report that would be returned. This length

is given in bytes.

Pre-call Conditions

The API must be initialized, and a specific instance should have been started with

QABatchWV_Open. A counter should also have been opened using

QABatchWV_CounterOpen.

Prototype

INTRET QABatchWV_CounterReportLength

(INTVAL viCounterHandle,

INTREF riXmlReportLength);

Parameters

viCounterHandle Handle for this instance of the counter.

riXmlReportLength Returns an integer of the report length in bytes.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Argument Explanation

77

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be

used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

Related Functions:

QABatchWV_CounterOpen

QABatchWV_CounterReport

QABatchWV_CounterClose

78

QABatchWV_CountryCount

Retrieves the number of dataset identifiers available to this instance of the API.

Pre-call conditions

The API is initialized, and a specific instance has been started with QABatchWV_

Open.

Prototype

INTRET QABatchWV_CountryCount

(INTVAL viHandle,

INTREF riCount);

Parameters

viHandle Handle for this instance of the API. If the handle that is

passed to viHandle is 0, all datasets are used. If the handle

is passed, all datasets within the section are used.

riCount Number of datasets available.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

Argument Explanation

79

Comments

This function tells you how many datasets are available for this particular thread

of the API. The availability of datasets is determined by the configuration file

specified in QABatchWV_Open.

Once you have the number of datasets, you can call QABatchWV_GetCountry

as many times as is necessary to retrieve a description of each dataset.

Related Functions:

QABatchWV_GetCountry

80

QABatchWV_DataSetCount

Retrieves the number of DataPlus sets, additional datasets and keyfinder sets that

are associated with a dataset.

Pre-call conditions

The API is initialized. No specific instances of the API need to be running.

Prototype

INTRET QABatchWV_DataSetCount

(INTVAL viHandle,

STRVAL vsIsoCode,

INTREF riCount);

Parameters

viHandle Handle for this instance of the API.

vsIsoCode The identifier of the set for which information will be returned.

riCount Number of sets associated with a dataset.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

File error: The file specified in vsIniFile could not be opened.

Argument Explanation

81

Related Functions:

QABatchWV_GetDataSet

QABatchWV_DataSetInfo

QABatchWV_GetCountry

QABatchWV_CountryCount

82

QABatchWV_DataSetInfo

Returns information about a particular dataset.

Pre-call conditions

The API must be initialized. A specific instance must have been started with

QABatchWV_Open.

Prototype

INTRET QABatchWV_DataSetInfo

(INTVAL viHandle,

STRVAL vsIsoCode,

INTREF riDaysLeft,

INTREF riDataDaysLeft,

INTREF riLicenceDaysLeft,

STRREF rsVersion,

INTVAL viVerLength,

STRREF rsCopyright,

INTVAL viCopyrightLength);

Parameters

viHandle Handle for this instance of the API.

vsIsoCode The dataset or additional dataset identifier for which

information will be returned.

riDaysLeft The lower of riDataDaysLeft and riLicenceDaysLeft.

riDataDaysLeft Number of days left until the first dataset expires.

riLicenceDaysLeft Number of days left until the first licence in the dataset

expires.

rsVersion Buffer to receive version information for the dataset.

viVerLength Maximum length of rsVersion.

rsCopyright Buffer to receive copyright information.

viCopyrightLength Maximum length of rsCopyright.

Argument Explanation

83

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to

this function, and the handle returned in riHandle should

be used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

Invalid country: The string passed to the vsIsoCode parameter is not valid.

The dataset identifier of the dataset has to be specified in

the InstalledData configuration setting.

Comments

When you pass a dataset identifier (for example, 'AUS' for Australia) into this

function, it returns information about the dataset to which the dataset identifier

relates.

The parameter riDaysLeft contains the lower of riDataDaysLeft and

riLicenceDaysLeft. For example, if riDataDaysLeft is 60 and riLicenceDaysLeft is

90, the riDaysLeft parameter will contain 60.

The parameter rsCopyright contains copyright information for the dataset in

question. For example, the Australia dataset returns a copyright for Australia Post.

If you only want to see some of the information that can be returned from this

function, you can set return parameters to NULL. For example, if you only want to

see when the dataset is going to expire, you can set rsVersion and rsCopyright to

NULL.

Related Functions:

QABatchWV_CountryCount, QABatchWV_GetCountry

84

QABatchWV_DPVGetCode

Used to query the lock code generated by the product when DPV is disabled in

the event of a seed address being searched upon. It is this code that must be

reported back to Experian Data Quality, in order for Experian Data Quality to

generate a corresponding unlock key. Since the lock code varies in length,

QABatchWV_DPVGetCodeLength should be called in order to make sure the

buffer provided is large enough for the lock code.

Prototype

INTRET QABatchWV_DPVGetCode

(STRREF rsLockCode,

INTVAL viLockCodeLength);

Parameters

rsLockCode Buffer to receive lock code.

viLockCodeLength Length of provided buffer rsLockCode.

Return values

Either: 0 if successful (lock code has been stored in the supplied buffer).

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

This information is only relevant when using USA data.

Argument Explanation

85

Comments

When DPV is disabled by a seed address, QAS Batch API generates a variable-

length alphanumeric code which is required to unlock DPV. If you do not call

QABatchWV_DPVGetCodeLength to determine the length of the lock code, then

the supplied buffer may not be large enough. If truncation occurs while populating

the buffer rsLockCode, this will be signaled in the error log. If an error occurs and

it is possible to populate the buffer rsLockCode, then this will be zero terminated.

86

QABatchWV_DPVGetCodeLength

Returns the length of the lock code generated by the product where DPV is

disabled in the event of a seed address being searched upon. This function

should be called before QABatchWV_DPVGetCode in order to ensure an

adequate buffer is supplied to that function to obtain the lock code.

Prototype

INTRET QABatchWV_DPVGetCodeLength

(INTREF riLockCodeLength);

Parameters

riLockCodeLength Length of the lock code.

Return values

Either: 0 if successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Comments

QAS Batch API generates an alphanumeric lock code when DPV is disabled. The

code can vary in length, so this function should be called before QABatchWV_

DPVGetCode in order to ensure an adequate buffer is supplied to that function

when obtaining the lock code.

This information is only relevant when using USA data.

Argument Explanation

87

QABatchWV_DPVGetInfo

Returns information about the DPV seed address which caused DPV to be

disabled. The USPS require this information to be submitted before an unlock key

can be issued.

Prototype

INTRET QABatchWV_DPVGetInfo

(INTVAL viDPVInfoType,

STRREF rsDPVInfo,

INTVAL viLength);

Parameters

viDPVInfoType Type of lock information to be returned.

rsDPVInfo Buffer to receive lock information.

viLength Length of provided buffer rsDPVInfo.

Return values

Either: 0 if successful (lock information has been stored in the supplied buffer).

Or: negative error code

Possible values of viDPVInfoType are:

dpvlockinfo_DATE Returns the date the seed address was encountered.

dpvlockinfo_TIME Returns the time the seed address was encountered.

dpvlockinfo_SEED Returns the seed address that was searched upon.

dpvlockinfo_SESSION Returns the name of the session in use when the

seed address was encountered.

This information is only relevant when using USA data.

Argument Explanation

Value Description

88

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

Comments

If the DPV has not been disabled by a seed address, or if the status of the

DPV system cannot be determined, this function will return blank strings.

If truncation occurs while populating the buffer rsDPVInfo, this will be signaled in

the error log. If an error occurs and it is possible to populate the buffer rsDPVInfo,

then this will be zero terminated.

89

QABatchWV_DPVSetKey

Sets an unlock key to re-enable DPV functionality where the DPV functionality is

disabled (i.e. key supplied by Experian Data Quality following the reporting of the

corresponding lock code).

Prototype

INTRET QABatchWV_DPVSetKey

(STRVAL vsUnlockKey);

Parameters

vsUnlockKey Buffer containing the unlock key.

Return values

Either: 0 if successful (the unlock code has re-enabled the DPV system)

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Invalid key: The key specified in parameter vsUnlockKey is not the valid

key required to unlock the DPV system. The DPV unlock key

should be as provided by Experian Data Quality.

This information is only relevant when using USA data.

Argument Explanation

90

QABatchWV_DPVState

Determines whether DPV functionality is enabled, disabled, or not in use. This

information can also be determined on a per-search basis through the use of the

additional dataset-specific information component of QAS Batch API's return

code.

Prototype

INTRET QABatchWV_DPVState

(INTREF riDPVState);

Parameters

riDPVState Returned state of the DPV system.

Return values

Either: 0 if successful (DPV state has been determined)

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Comments

The argument riDPVState will be populated with one of the following values:

-1 DPVstate_Unknown Returned by the function in the event of an error.

0 DPVstate_NotInUse The DPV system is not in use.

This information is only relevant when using USA data.

Argument Explanation

State Macro Explanation

91

1 DPVstate_Enabled The DPV system is enabled.

2 DPVstate_Disabled The DPV system has been disabled following a

seed address search.

State Macro Explanation

92

QABatchWV_EndSearch

Deallocates resources and the search handle used by a call to QABatchWV_

Clean.

Pre-call conditions

An instance of the API has been initialized and opened with QABatchWV_Open.

QABatchWV_Clean has been called, and all results have been retrieved.

Prototype

INTRET QABatchWV_EndSearch

(INTVAL viSearchHandle);

Parameters

viSearchHandle Handle for this search. If a NULL search handle was passed to

QABatchWV_Clean this should be set to 0.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viSearchHandle is not

valid. QABatchWV_Clean must be successfully called prior

to this function, and the handle returned from riSearchHandle

should be used.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

Argument Explanation

93

Comments

This function should be called after results have been retrieved from

QABatchWV_Clean, in order to free the search handle for use in further

searches.

Related Functions:

QABatchWV_Clean

94

QABatchWV_FormattedLineCount

Returns the number of formatted lines that a search has resulted in.

Pre-call conditions

The API must be initialized, and started with QABatchWV_Open, and a call to

QABatchWV_Clean should have been completed successfully.

Prototype

INTRET QABatchWV_FormattedLineCount

(INTVAL viSearchHandle,

INTREF riCount);

Parameters

viSearchHandle Handle for this search. If a NULL search handle was

passed to QABatchWV_Clean this should be set to 0.

riCount Count of formatted lines.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viSearchHandle is not

valid. QABatchWV_Clean must be successfully called prior

to this function, and the handle returned from

riSearchHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to determine

the cause of the problem.

Argument Explanation

95

Comments

This function tells you how many times QABatchWV_GetFormattedLine needs to

be called in order to retrieve a full address.

For the standard address and enhanced cleaning modes, the value of this

function is constant for a dataset within a session as its value is set in the

configuration file.

For the Postal code update mode, the value is determined by the number of clean

lines passed into QABatchWV_Clean.

Related Functions:

QABatchWV_GetFormattedLine

QABatchWV_LayoutLineElements

96

QABatchWV_GetAuditCode

Extracts a text-based audit code from the counters file on the disk where QAS

Batch API With Suppression is installed.

Pre-call Conditions

The API is initialized. No specific instances of the API need to be running.

Prototype

INTRET QABatchWV_GetAuditCode

(STRREF rsAuditCode,

INTVAL viAuditCodeLength);

Parameters

rsAuditCode Buffer to receive audit code string.

viAuditCodeLength Maximum length of audit code.

Return Values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Argument Explanation

97

Related Functions:

QABatchWV_ApplyUpdateCode

98

QABatchWV_GetCountry

Returns a description of a dataset available to this instance of the API.

Pre-call conditions

The API must be initialized, with no searches in progress. A specific instance must

have been started with QABatchWV_Open.

Prototype

INTRET QABatchWV_GetCountry

(INTVAL viHandle,

INTVAL viIndex,

STRREF rsIsoCode,

STRREF rsCountry,

INTVAL viLength);

Parameters

viHandle Handle for this instance of the API. If the handle that is passed

to viHandle is 0, all datasets are used. If the handle is passed,

all datasets within the section are used.

viIndex Number of dataset.

rsIsoCode Buffer to receive the dataset identifier.

rsCountry Buffer to receive name of dataset.

viLength Maximum length of rsCountry.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Argument Explanation

99

Bad handle: The handle passed to the parameter viHandle is not

valid. QABatchWV_Open must be successfully called

prior to this function, and the handle returned in

riHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

Country out of range: The index passed to the viIndex parameter is too large.

The value should be between 0 and the count returned

from QABatchWV_CountryCount -1.

Comments

This function, in conjunction with QABatchWV_CountryCount, is useful if you

want to confirm the number, names and dataset identifiers of available datasets

for a particular instance of the API. You might want to call these two functions prior

to the first call of QABatchWV_Clean so that you know which datasets are

available to search on. You can also pass the dataset identifier into

QABatchWV_DataSetInfo to get further information about the dataset.

You should call this function as many times as required to retrieve dataset details.

For example, if QABatchWV_CountryCount returned a count of 4, you would call

QABatchWV_GetCountry a maximum of four times to retrieve details of each

dataset, setting viIndex to 0, 1, 2 and 3.

The parameter viIndex contains the number of the dataset whose details you want

to retrieve. For example, inputting 0 retrieves the name of the first installed

dataset, 1 returns the name of the second dataset, and so on.

The output parameters rsIsoCode and rsCountry contain the dataset identifier and

country name respectively of a dataset. A dataset identifier is a three-character

descriptor for a dataset, which appears on the data sheet supplied with each

dataset. For example, the Australia dataset identifier is AUS.

The rsIsoCode buffer must be at least 4 characters long, in order to accommodate

a three-character dataset identifier and a trailing NULL.

Related Functions:

QABatchWV_CountryCount

QABatchWV_DataSetInfo

100

QABatchWV_GetDataSet

Retrieves the DataPlus sets, additional datasets and keyfinder sets for a dataset.

Pre-call conditions

The API must be initialized with QABatchWV_Open, and a call to QABatchWV_

DataSetCount should have been completed successfully.

Prototype

INTRET QABatchWV_GetDataSet

(INTVAL viHandle,

INTVAL viIndex,

STRVAL vsIsoCode,

STRREF rsName,

INTVAL viNameLength,

STRREF rsDesc,

INTVAL viDescLength,

LONGREF rlType);

Parameters

viHandle Handle for this instance of the API.

viIndex Set index (between 0 and count).

vsIsoCode The dataset identifier of the dataset for which information will be

returned.

rsName Name of dataset.

viNameLength Maximum length of buffer for rsName.

rsDesc Description of the dataset.

viDescLength Maximum length of buffer for rsDesc.

rlType Type of data.

Return values

Either: 0 if call successful

Or: negative error code

Argument Explanation

101

Possible values of rlType are:

Value Description

datasettype_BASE 1 Dataset type is base dataset.

datasettype_DATAPLUS 2 Dataset type is DataPlus set.

datasettype_ADDITIONAL 4 Dataset type is additional dataset.

datasettype_KEYFINDER 32 Dataset type is keyfinder (i.e. the dataset

contains a logical reverse search key).

Note

Some sets have one and the same name, for ex. aprudp.dap (dataplus

set) and aprudp.kfx (keyfinder set). You should make difference

between them by the type.

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Function called out of

sequence:

The function has been called out of sequence.

QABatchWV_DataSetCount must be successfully

called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

File error: The file specified in vsIniFile could not be opened.

Dataset out of range: The index passed to the viIndex parameter is too large.

It should be between 0 and the count from

QABatchWV_DataSetCount -1.

Related Functions:

QABatchWV_DataSetCount

QABatchWV_DataSetInfo

QABatchWV_GetCountry

QABatchWV_CountryCount

102

QABatchWV_GetDPFieldCount

Retrieves the number of DataPlus fields that are associated with a given DataPlus

or Additional dataset. A list of suitable datasets can be obtained from

QABatchWV_DataSetCount and QABatchWV_GetDataSet.

Datasets that can contain DataPlus fields are those of the types datasettype_

DATAPLUS or datasettype_ADDITIONAL. See QABatchWV_GetDataSet for

more information about dataset types.

Note that not all datasets listed by QABatchWV_DataSetCount and

QABatchWV_GetDataSet will be accessible due to layout and licensing

restrictions.

Pre-call conditions

The API must be initialized with QABatchWV_Open.

Prototype

INTRET QABatchWV_GetDPFiledCount

(INTVAL viHandle,

STRVAL vsDPSet,

LONGREF rlCount);

Parameters

viHandle Handle for this instance of the API.

vsDPSet The identifier of the dataset for which information will be returned.

rlCount Number of DataPlus fields associated with a dataset.

Return values

Either: 0 if call successful

Or: negative error code

Argument Explanation

103

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

No DataPlus: The requested DataPlus is not available for the current layout.

Related Functions:

QABatchWV_DataSetCount

QABatchWV_GetDataSet

QABatchWV_GetDPFieldName

QABatchWV_GetDPFieldInfo

104

QABatchWV_GetDPFieldInfo

Retrieves information for a specific DataPlus field for a dataset. DataPlus fields

are indexed from zero to QABatchWV_GetDPFieldCount -1.

Pre-call conditions

The API must be initialized with QABatchWV_Open and a call to QABatchWV_

GetDPFieldCount should have been completed successfully.

Prototype

INTRET QABatchWV_GetDPFieldInfo

(INTVAL viHandle,

STRVAL vsDPSet,

INTVAL viIndex,

INTVAL viInfoType,

STRREF rsStringInfo,

INTVAL viStringInfoLength,

LONGREF rlLongInfo);

Parameters

viHandle Handle for this instance of the API.

vsDPSet The dataset identifier of the dataset for which information

will be returned.

viIndex Field index (between 0 and count).

viInfoType Field info type.

rsStringInfo Receives the string information for string info types.

viStringInfoLength Maximum length of buffer for rsStringInfo.

rlLongInfo Receives the long information for long info types.

Return values

Either: 0 if call successful

Or: negative error code

Argument Explanation

105

Possible values of vsInfoType are:

Value Type Description

dpfieldinfotype_CODE String Field Code, also returned by

QABatchWV_GetDPFieldName.

dpfieldinfotype_NAME String Field Name, also returned by

QABatchWV_GetDPFieldName.

dpfieldinfotype_

FORMATSTRING

String Format String, mainly for date fields.

dpfieldinfotype_ATTR Long Attributes, bitfield, see the dpfieldatr_

values below.

dpfieldinfotype_MAXLEN Long Maximum possible length for the value

when formatting with this field.

Possible attribute flags returned in rILongInfo for dpfieldinfotype_

ATTR are:

dpfieldattr_DATE Field is a date.

dpfieldattr_BARCODE Field is a barcode.

dpfieldattr_SUPPRESSION Field is part of suppression data.

dpfieldattr_DATERANGE Field is a date range.

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Function called The function has been called out of sequence. QABatchWV_

out of sequence: GetDPFieldCount must be successfully called prior to this

function.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

No DataPlus: The requested DataPlus is not available for the current layout.

Field out of

range:

The index passed to the viIndex parameter is too large. It

should be between 0 and the count from QABatchWV_

GetDPFieldCount -1.

Value Description

106

Invalid info type: The info type passed to the viInfoType parameter is not valid.

See the table above for the list of valid info types.

Related Functions:

QABatchWV_GetDPFieldCount

QABatchWV_GetDPFieldName

107

QABatchWV_GetDPFieldName

Retrieves the code and name for a specific DataPlus field for a dataset. DataPlus

fields are indexed from zero to QABatchWV_GetDPFieldCount -1.

The DataPlus field code is suitable for addresses format specification. The

DataPlus field name is a human-readable description of the field. Use

QABatchWV_GetDPFieldInfo for more information about the DataPlus field.

Pre-call conditions

The API must be initialized with QABatchWV_Open and a call to QABatchWV_

GetDPFieldCount should have been completed successfully.

Prototype

INTRET QABatchWV_GetDPFieldName

(INTVAL viHandle,

STRVAL vsDPSet,

INTVAL viIndex,

STRREF rsCode,

INTVAL viCodeLength,

STRREF rsName,

INTVAL viNameLength);

Parameters

viHandle Handle for this instance of the API.

vsDPSet The dataset identifier of the dataset for which information

will be returned.

viIndex Field index (between 0 and count).

rsCode DataPlus field code.

viCodeLength Maximum length of buffer for rsCode.

rsName DataPlus field name.

viNameLength Maximum length of buffer for rsName.

Argument Explanation

108

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Function called The function has been called out of sequence. QABatchWV_

out of sequence: GetDPFieldCount must be successfully called prior to this

function.

Bad parameter: One of the API parameters has been passed as an invalid

value. Use the LogErrors configuration setting to determine

the cause of the problem.

No DataPlus: The requested DataPlus is not available for the current layout.

Field out of

range:

The index passed to the viIndex parameter is too large. It

should be between 0 and the count from QABatchWV_

GetDPFieldCount -1.

Related Functions:

QABatchWV_GetDPFieldCount

QABatchWV_GetDPFieldInfo

109

QABatchWV_GetFormattedLine

This function gets one formatted address line from the latest retrieved address.

Pre-call conditions

The API must be initialized and started with QABatchWV_Open, and a call to

QABatchWV_Clean should have been completed successfully.

Prototype

INTRET QABatchWV_GetFormattedLine

(INTVAL viSearchHandle,

INTVAL viLine,

STRREF rsBuffer,

INTVAL viBuffLen);

Parameters

viSearchHandle Handle for this search. If a NULL search handle was passed to

QABatchWV_Clean this should be set to 0.

viLine Number of the line to be retrieved.

rsBuffer Buffer to return the formatted address line.

viBuffLen Maximum length of the address line buffer.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Argument Explanation

110

Bad handle: The handle passed to the parameter viSearchHandle is not

valid. QABatchWV_Clean must be successfully called prior

to this function, and the handle returned from riSearchHandle

should be used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to determine

the cause of the problem.

Out of range: The parameter passed to viLine is too large. This should be a

value between 0 and the count from QABatchWV_

FormattedLineCount -1.

Comments

This function should be called as many times as necessary to retrieve a full

address. If this function is called during a Postal code only clean, it will return the

same number of lines as contained in the input address.

Related Functions:

QABatchWV_FormattedLineCount

111

QABatchWV_GetLayout

Retrieves the name of one layout in the specified configuration file. For more

information about configuration files see page 147.

Pre-call conditions

The API is initialized. No specific instances of the API need to be running.

Prototype

INTRET QABatchWV_GetLayout

(STRVAL vsIniFile,

INTVAL viIndex,

STRREF rsName,

INTVAL viLength);

Parameters

vsIniFile Name of a configuration file if you have created a separate

file for layouts. If vsIniFile is not specified, the default

configuration file, qaworld.ini, will be used.

viIndex Number of layout.

rsName Name of layout.

viLength Maximum length of buffer for rsName.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Argument Explanation

112

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

File error: The file specified in vsIniFile could not be opened.

Layout out of range: The index passed to the viIndex parameter is too large.

It should be between 0 and the count from

QABatchWV_LayoutCount -1.

Comments

This function, in conjunction with QABatchWV_LayoutCount, is useful if you want

to confirm the number and names of available configuration layouts prior to

calling QABatchWV_Open.

You should call this function as many times as required to retrieve layout names

from a configuration file. For example, if QABatchWV_LayoutCount returned a

count of 6, you would call QABatchWV_GetLayout a maximum of six times to

retrieve each layout name.

The parameter viIndex contains the number of the layout whose name you want

to retrieve. For example, inputting 0 retrieves the name of the first layout in the

configuration file, 1 returns the name of the second layout, and so on.

Related Functions:

QABatchWV_LayoutCount

QABatchWV_ChangeLayout

113

QABatchWV_GetLicenceInfo

Returns a specified line of licensing information.

Pre-call conditions

The API must be initialized. A specific instance must have been started with

QABatchWV_Open.

Prototype

INTRET QABatchWV_GetLicenceInfo

(INTVAL viHandle,

STRVAL vsIsoCode,

INTVAL viLine,

STRREF rsLicenceInfo,

INTVAL viLicenceInfoLength);

Parameters

viHandle Handle for this instance of the API.

vsIsoCode The dataset identifier of the dataset for which information

will be returned.

viLine The line number of the licensing information to get.

rsLicenceInfo The licensing information string returned.

viLicenceInfoLength The size of the buffer passed into rsLicenceInfo.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Argument Explanation

114

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

Invalid country: The string passed to the vsIsoCode parameter is not valid. The

dataset identifier has to be specified in the InstalledData

configuration setting.

Out of range: The parameter passed to viLine is too large. This should be a

value between 0 and the count from QABatchWV_

LicenceInfoCount -1.

Comments

The licensing information string returned will contain the licence information for

one data file in the dataset.

115

QABatchWV_GetMatchInfo

This function provides access to detailed match information. Most values are

returned as integers to ease processing. Each parameter provides a discrete

component of the full match code.

Pre-call conditions

The API must be initialized and started with QABatchWV_Open, and a call to

QABatchWV_Clean should have been completed successfully.

Prototype

INTRET QABatchWV_GetMatchInfo

(INTVAL viSearchHandle,

STRREF rsIsoCode,

STRREF rsMatchType,

INTREF riConfidence,

INTREF riPostcodeAction,

INTREF riAddressAction,

LONGREF rlGenericInfo,

LONGREF rlCountryInfo,

LONGREF rlCountryInfo2)

Parameters

viSearchHandle Handle for this search thread.

rsIsoCode Dataset identifier.

rsMatchType Match type (zero-terminated single letter).

riConfidence Confidence of match (0-9).

riPostcodeAction Action performed on postal code (0-3).

riAddressAction Action performed on address (0-3).

rlGenericInfo Generic information (32 bit values).

rlCountryInfo Dataset-specific information (32 bit values).

rlCountryInfo2 Additional Dataset-specific information (32 bit values).

Argument Explanation

116

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viSearchHandle is not

valid. QABatchWV_Clean must be successfully called prior to

this function, and the handle returned from riSearchHandle

should be used.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

Related Functions:

QABatchWV_Clean

QABatchWV_Open

117

QABatchWV_GetOItltem

This function gets one unused line from the latest input address.

Pre-call conditions

The API must be initialized with QABatchWV_Open, QABatchWV_GetOlts is

called before.

Prototype

INTRET QABatchWV_GetOltItem

(INTVAL handle,
UINTVAL index,
STRREF code,
UINTVAL maxCodeLen,
STRREF name,
UINTVAL maxNameLen);

Parameters

Argument Explanation

handle An opened batch handle from previously
called QABatchWV_Open.

index Index (zero based) of the OLT from the group, retrieved
by the last call of QABatchWV_GetOlts

code Output – the code of the OLT (e.g. L11)

maxCodeLen Maximum number of characters, that can be returned
in code.

name Output – the name of the OLT (e.g. County)

maxNameLen Maximum number of characters, that can be returned
in name.

Return values

Either: 0 if call successful

Or: negative error code

118

Possible Error Scenarios

No such index:

The index supplied is equal or greater
than the oltCount, returned
by QABatchWV_Open.

.

Comments

This function is expected to be called after calling QABatchWV_Open. The standard
approach is to call QABatchWV_Open an then call this function with each index from
0 to oltCount, returned by QABatchWV_Open.

119

QABatchWV_GetOIts

This function gets OLT list for a specific identifier. The identifier can identify either a
base dataset (like GBR) or an ADS (GBRELC). The function itself retrieves the OLT
list and returns the number of OLTs Information about individual OLT can be
retrieved by using the GetOltItem function.

Pre-call conditions

The API must be initialized with QABatchWV_Open.

Prototype

INTRET QABatchWV_GetOlts

(INTVAL handle,
STRVAL identifier,
INTREF isSupression,
UINTREF oltCount);

Parameters

Argument Explanation

handle An opened batch handle from previously
called QABatchWV_Open.

identifier Identifier of the OLT group. Giving a name of a base
dataset (like GBR) will get all the OLTs for the base
dataset. Giving a name of an ADS (like GBRELC) will
get all the OLTs from the base dataset plus the OLTs
from the ADS

isSupression Output parameter that is set to non-zero if the identifier
identifies a suppression ADS. Otherwise this is set to 0.
If the identifier identifies a base dataset, it is also set to
0.

oltCount Output parameter that is set to the number of the OLTs,
in the group identified by identifier

Return values

Either: 0 if call successful

Or: negative error code

120

Possible Error Scenarios

No OLT group with such identifier: identifier does not identify base dataset
or an ADS.
Dataset containing the desired identifier
is not in qaserve.ini.
ADS file needed is not available.

.

Comments

This function is expected to be called before calling QABatchWV_GetOltItem. The
returned oltCount is used to iterate through all the OLTs.

121

QABatchWV_GetUnusedInput

This function gets one unused line from the latest input address.

Pre-call conditions

The API must be initialized with QABatchWV_Open, and a call to QABatchWV_

Clean should have been completed successfully.

Prototype

INTRET QABatchWV_GetUnusedInput

(INTVAL viSearchHandle,

INTVAL viLine,

STRREF rsBuffer,

INTVAL viLength,

LONGREF rlLineCompleteness,

LONGREF rlLineType,

LONGREF rlLinePosition,

INTREF riCareOf,

INTREF riPremSuffix);

Parameters

viSearchHandle Handle for this search thread. If a NULL search handle

was passed to QABatchWV_Clean this should be set to 0.

viLine Number of the line to be retrieved.

rsBuffer Buffer to return the unused line.

viLength Maximum length of the unused line buffer.

rlLineCompleteness Describes how much of the line is unused.

rlLineType Describes what type of information is on the line.

rlLinePosition Describes the position of the line, relative to the street.

riCareOf Boolean denoting whether the line is a 'care of' premises

prefix.

riPremSuffix Boolean denoting whether the line is an alphabetic

premises suffix.

Argument Explanation

122

Return values

Either: 0 if call successful

Or: negative error code

Possible values of rlLineCompleteness are:

unusedcompleteness_COMPLETE Complete line (i.e. as supplied)

unusedcompleteness_PARTIAL Incomplete line (i.e. part matched)

Possible values of rlLineType are:

unusedtype_ADDRESS Unused address data

unusedtype_NAME Unused name data

Possible values of rlLinePosition are:

unusedstreet_PRESTREET Appeared before matched street

unusedstreet_POSTSTREET Appeared after matched street

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viSearchHandle is not

valid. QABatchWV_Clean must be successfully called prior to

this function, and the handle returned from riSearchHandle

should be used.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

Out of range: The parameter passed to viLine is too large. This should be a

value between 0 and the count from QABatchWV_

UnusedLineCount -1.

Value Description

Value Description

Value Description

123

Comments

This function is optional; call it in conjunction with QABatchWV_

UnusedLineCount if you want to see which parts of the input address, if any, were

not included in the output address.

Unused lines will include any leading non-matching elements from the input

address. For example, say this is the input address:

John Smith, Suite 1, Level 9, 60 Miller St, North Sydney, 2060

The dataset (Australia, in this case) does not contain names, so although the rest

of the address is correct, QAS Batch API cannot match the leading element (i.e.

'John Smith') to anything and returns it as unused.

If the CleaningAction keyword is set to 'Enhanced', then 'John Smith' would be

prefixed to the output address. If this is the case, it would not be returned as an

unused line.

The function should be called as many times as necessary to retrieve any unused

lines from the input address. If the function is called out of place (for example,

before QABatchWV_Clean), it will fail with an error.

Related Functions:

QABatchWV_UnusedLineCount

124

QABatchWV_LayoutCount

Retrieves the number of available layouts in the specified configuration file. For

more information about configuration files see page 147.

Pre-call conditions

The API is initialized. No specific instances of the API need to be running.

Prototype

INTRET QABatchWV_LayoutCount

(STRVAL vsIniFile,

INTREF riCount);

Parameters

vsIniFile Name of a configuration file if you have created a separate

file for layouts. If vsIniFile is not specified, the default

configuration file, qaworld.ini, will be used.

riCount Number of layouts in the configuration file.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

File error: The file specified in vsIniFile could not be opened.

Argument Explanation

125

Comments

This function tells you how many configuration layouts are available in the INI file

that you specify. See Configuring the QAS Batch API for a detailed description of

configuration files and layouts.

You can call this function before QABatchWV_Open, as it does not relate to a

specific instance of the API.

Once you have the number of layouts, you can call QABatchWV_GetLayout as

many times as is necessary to retrieve the name of each layout.

Related Functions:

QABatchWV_GetLayout

QABatchWV_ChangeLayout

126

QABatchWV_LayoutLineCount

This function returns the number of address lines available in the configuration

layout that you specified in your call to QABatchWV_Open.

Pre-call conditions

The API must be initialized, and a specific instance should have been started with

QABatchWV_Open.

Prototype

INTRET QABatchWV_LayoutLineCount

(INTVAL viHandle,

STRVAL vsCountry,

INTREF riCount);

Parameters

viHandle Handle for this instance of the API.

vsCountry The dataset identifier for the layout to be returned.

riCount Number of lines in layout.

Return values

Either: 0 if call successful

Or: negative error code

Comments

This function tells you how many times the function QABatchWV_

LayoutLineElements needs to be called in order to retrieve a full address layout.

The value of this function is constant for a dataset within a session, as its value is

set in the configuration file.

Argument Explanation

127

Related Functions:

QABatchWV_GetFormattedLine

QABatchWV_LayoutLineElements

128

QABatchWV_LayoutLineElements

Returns a description of the elements fixed to a particular line of the address

layout.

Pre-call conditions

The API must be initialized, and a specific instance should have been started with

QABatchWV_Open.

Prototype

INTRET QABatchWV_LayoutLineElements

(INTVAL viHandle,

STRVAL vsCountry,

INTVAL viLine,

STRREF rsBuffer,

INTVAL viLength,

LONGREF rlFlags);

Parameters

viHandle Handle for this instance of the API.

vsCountry The dataset identifier for the layout to be returned.

viLine Address line to retrieve (from 0 to QABatchWV_LayoutLineCount

-1).

rsBuffer Buffer to receive line elements.

viLength Maximum length of rsBuffer.

rlFlags Line description.

Return values

Either: 0 if call successful

Or: negative error code

Argument Explanation

129

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be

used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

Invalid country: The string passed to the vsCountry parameter is not valid.

The dataset identifier has to be specified in the

InstalledData configuration setting.

Out of range: The parameter passed to viLine is too large. This should be

a value between 0 and the count from QABatchWV_

LayoutLineCount -1.

Comments

This function tells you whether a specific address / DataPlus element, if any, has

been fixed to a line of an address layout. When an element is fixed to a line, it

cannot appear anywhere else in the address. See the AddressLineN setting for

details of how to fix an element to a line.

If you want to retrieve descriptions of each address line from the current layout,

you should call this function as many times as required. For example, if

QABatchWV_LayoutLineCount returned a count of 6 address lines, you could

call this function a maximum of six times to retrieve a description of each line.

The parameter viLine contains the number of the address line whose description

you want to retrieve. For example, inputting 0 retrieves the description of the first

line in the layout, 1 returns the second line, and so on.

The parameter rsBuffer contains the results of the function call. For example, if the

town was fixed to line 4 of an address layout, you would set the value of viLine as

3, and rsBuffer would return 'Town'. If there are no elements (or more than one

element) fixed to the line that you have specified, the buffer will be empty.

130

The rlFlags parameter contains the type of line that is being retrieved. The 'flags'

that can be returned are as follows:

Flag name Value

element_ADDRESS 0x00000000

element_NAME 0x00000001

element_DATAPLUS 0x00000002

element_ANCILLARY 0x00000003

format_TRUNCATED 0x00000010

format_OVERFLOW 0x00000020

format_DATAPLUSSYNTAX 0x00000040

format_DATAPLUSEXPIRED 0x00000080

format_DATAPLUSBLANK 0x00000100

A return of 0 (element_ADDRESS) essentially indicates the absence of any flags,

which means that the standard line type has been received, i.e. a line containing

address elements.

For example, you might have a seven-line address layout, where the first line

contains name information, the second to sixth lines contain the address, and the

final line is reserved for DataPlus data. In this case, the first line of the returned

address would return element_NAME, the last line would return element_

DATAPLUS, and the lines in between would return element_ADDRESS.

The values assigned to each flag are symbolic constants defined by the API and

appear in the prototyped header files for each language.

Related Functions:

QABatchWV_LayoutLineCount

131

QABatchWV_LicenceInfoCount

Returns the number of lines of licensing information available for a specified

dataset.

Pre-call conditions

The API must be initialized. A specific instance must have been started with

QABatchWV_Open.

Prototype

INTRET QABatchWV_LicenceInfoCount

(INTVAL viHandle,

STRVAL vsIsoCode,

INTREF riLicenceInfoCount);

Parameters

viHandle Handle for this instance of the API.

vsIsoCode The dataset identifier of the dataset for which information

will be returned.

vsLicenceInfoCount The number of licence information lines available.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be used.

Argument Explanation

132

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

Invalid country: The string passed to the vsIsoCode parameter is not valid.

The dataset identifier has to be specified in the

InstalledData configuration setting.

Comments

One line of licensing information is available for each data file in the specified

dataset. A single data file might be core data, an additional dataset (e.g. Names

data), or a DataPlus set.

For example, if you have the GBR Mosaic DataPlus set configured in the

qawserve.ini file, but there is no licence information present in the qalicn.ini file, a

count of 1 is returned. In addition, QABatchWV_GetLicenceInfo returns the string

"Data Licence not found".

133

QABatchWV_Open

Opens an instance of the API, specifying the name of the configuration file to be

used, and the layout to use within that file.

Pre-call conditions

The API has been initialized with QABatchWV_Startup.

Prototype

INTRET QABatchWV_Open

(STRVAL vsIniFile,

STRVAL vsLayout,

LONGVAL vlFlags,

INTREF riHandle);

Parameters

vsIniFile Name of configuration file to open. If the full path is not

specified, QAS Batch API will only check for the configuration

file within the program directory. The default configuration file

is qaworld.ini, but a separate configuration file can be used to

handle layout information. For more information about

configuration files, see page 147.

vsLayout Layout section to open.

vlFlags Included to provide for extra functionality in future versions.

riHandle Handle returned by the API (if there is more than one user

accessing the search engine).

Return values

Either: 0 if call successful

Or: negative error code

Argument Explanation

134

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

No handles: QABatchWV_Open has been called too many times

without a call to QABatchWV_Close. There is a limit of

32 open handles that can be created. Ensure that

QABatchWV_Close is called when an open instance is

not required.

No installed countries: No countries were successfully started. Check that all

datasets have been installed correctly and ensure that

there are countries defined in the InstalledData

setting.

INI file error: The file specified in vsIniFile could not be opened. For

more information about configuration files see page 147.

No country file: The API could not find the file country.ini. Ensure that the

product has been installed correctly, and the file

country.ini is present in the program directory.

File error: There was an error attempting to open a file. This is most

likely to occur when opening a data file. Ensure the

datasets have been correctly installed and that the

corresponding settings are defined in InstalledData.

Invalid layout: An invalid layout is specified in the configuration file

passed to vsIniFile. Ensure that a layout is defined within

the configuration setting that is passed to the vsLayout

parameter.

Layout names in the configuration file are enclosed by

square brackets. However, when specifying a layout

name as a parameter in a function call, the square

brackets should not be included.

Check that the layout has the correct syntax. See

AddressLineCount and AddressLineN.

Comments

When you open an instance of the QAS Batch API, you need to specify the

configuration file you are using, and the layout within that configuration file which

contains your output address format.

135

If NULL is passed into either of the above input parameters, the API uses defaults.

The default configuration file is qaworld.ini, and the default layout within that file is

[QADefault] (without brackets).

You might also get an error if you have chosen (in the configuration file) to create

a log file and the QAS Batch API cannot find the specified drive or directory to

create it. An error will also be returned if one of the datasets has expired or has

been moved from its default location.

When the API instance has initialized, it returns a handle in the form of an integer.

This handle is used to distinguish between multiple users of the QAS Batch API

search engine and should be passed into all subsequent functions. It should be

set to 0 if you do not wish to multithread the QAS Batch API.

There can be 32 instances of the API running at any one time, in other words

QABatchWV_Open can be called 32 times. If all instances are already in use

when you call this function, the error qaerr_NOHANDLES is returned.

Related Functions:

QABatchWV_Close

136

QABatchWV_RunMode

This function switches an instance of QAS Batch into or out of 'Estimate Mode'.

Whilst in Estimate Mode, counter statistics can be returned, allowing a user to

estimate the cost of a suppression without committing to purchasing the clicks.

Upon calling this function, all open counter instances will be reset.

Pre-call Conditions

The API must be initialized, and a specific instance should have been started with

QABatchWV_Open.

Prototype

INTRET QABatchWV_RunMode

(INTVAL viHandle,

INTVAL viEstimateMode);

Parameters

viHandle Handle for this instance of the API.

viEstimateMode To activate Estimate Mode, pass a non-zero value into this

parameter. To disable Estimate Mode, pass a zero into this

parameter.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_

Startup must be successfully called prior to this function.

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Argument Explanation

137

Bad handle: The handle passed to the parameter viHandle is not valid.

QABatchWV_Open must be successfully called prior to this

function, and the handle returned in riHandle should be

used.

Bad parameter: One of the API parameters has been passed an invalid

value. Use the LogErrors configuration setting to

determine the cause of the problem.

Comments

Whilst in Estimate Mode, all items will return the matchcode

A0000000000000000000 and the formatted line count will be zero. The

QAS Batch statistics will however be populated with the aggregate match detail

as if the run had actually taken place.

When in Estimate Mode, it is not possible to extract the match and suppression

details for an address without switching out of Estimate Mode and running the

address again.

After a run is complete, any counter(s) should be read and a report produced

before closing the instance or changing the mode, as the information will be

cleared.

For more information on using Estimate Mode, see "Estimate Mode" on page 198.

Related Functions:

QABatchWV_CounterOpen

QABatchWV_CounterReport

QABatchWV_CounterClose

138

QABatchWV_Shutdown

Closes down all instances of the API and must be called as the final function.

Pre-call conditions

The API is initialized, and no searches are in progress.

Prototype

INTRET QABatchWV_Shutdown

(VOIDARG);

Return values

Either: 0 if call successful

Or: negative error code

Comments

This function will close down the API completely, and should be called even if

QABatchWV_Close has shut down all instances of the API. An error will be

returned if one or more instances of the API is in use (for example, a search is in

progress).

Related Functions:

QABatchWV_Startup

QABatchWV_Close

139

QABatchWV_Startup

Initialises the API. This function must be called before any other functions can be

used.

Pre-call conditions

None.

Prototype

INTRET QABatchWV_Startup

(LONGVAL vlFlags);

Parameters

vlFlags Allows adjusting the way Batch API operates globally, affecting all

API instances.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Locale file: The API could not find the file qalcl.dat. Ensure the product has

been installed correctly and the file qalcl.dat is in the program

directory.

Comments

This function initializes the QAS Batch API. Once initialized, you can either call

informational functions such as QABatchWV_LayoutCount, or you can open an

instance of the API with QABatchWV_Open.

Argument Explanation

140

qabwvflags_NONE This value uses the default settings for Batch API.

qabwvflags_

SESSION

This value tells QAS Batch API to work in Session Mode.

This affects the way Batch API will treat custom.ini files

supplied to QABatchWV_Open.

If this function is called out of turn or encounters an error while initializing, the API

will shut down and an appropriate error will be flagged.

Related Functions:

QABatchWV_Shutdown

QABatchWV_Open

Attribute Explanation

141

QABatchWV_UnusedLineCount

This function returns the number of lines that have not been used from the input

address.

Pre-call conditions

The API must be initialized, a specific instance started with QABatchWV_Open,

and QABatchWV_Clean called.

Prototype

INTRET QABatchWV_UnusedLineCount

(INTVAL viSearchHandle,

INTREF riCount);

Parameters

viSearchHandle Handle for this search thread.

riCount Number of unused lines.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly. QABatchWV_Startup

must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viSearchHandle is not

valid. QABatchWV_Clean must be successfully called prior to

this function, and the handle returned from riSearchHandle

should be used.

Bad parameter: One of the API parameters has been passed an invalid value.

Use the LogErrors configuration setting to determine the

cause of the problem.

Argument Explanation

142

Comments

The value returned by this function tells you how many times you need to call

QABatchWV_GetUnusedInput. Its value will depend on the input address, and

therefore varies within a session.

A call to this function will produce a zero value if all lines from the input address

also appear in the output.

Related Functions:

QABatchWV_GetUnusedInput

143

QAErrorHistory

This function provides detailed error information for single threaded integrations.

QAErrorHistory should not be used as a diagnostic tool in a multithreaded

integration.

Pre-call conditions

The API has been shut down with QABatchWV_Shutdown.

Prototype

INTRET QAErrorHistory

(INTVAL viAll,

INTVAL viLineNo,

STRREF rsBuffer,

INTVAL viBuffLen);

Parameters

viAll Specifies the level of errors returned. Set viAll to 0 to access the

errors directly associated with the most recent error code, or 1 to

access QAS Batch API's entire error history (which is likely to

include messages corresponding to unrelated non-fatal internal

errors). It is recommended that viAll is set to 0.

viLineNo Line number being accessed (or negative if resetting).

rsBuffer Buffer to receive error text message.

viBuffLen Maximum length of the buffer (including room for NULL

terminator).

Return values

Either: 0 if call successful

Or: negative error code

Argument Explanation

144

Comments

This function is used for accessing more detailed error information than that

returned by QAErrorMessage. For example, QAErrorMessage may return 'file

not found' whereas QAErrorHistory can highlight the specific file(s) that was not

found.

Resetting frees up memory allocated by the function. For more information, see

QASystemInfo on page 143.

145

QAErrorLevel

Returns the severity of an error.

Prototype

INTRET QAErrorLevel

(INTVAL viStatus);

Parameters

viStatus Error code.

Return values

Either: 0 for a fatal or serious error

Or: 1 for a warning

Comments

This function indicates the severity of an error returned by the API. A fatal or

serious error should be flagged to the user and the API shut down. A warning

should be handled in a manner appropriate to the condition and can, if desired,

be ignored.

Argument Explanation

146

QAErrorMessage

This function converts an error code to a text explanation.

Pre-call conditions

The API must be initialized, and a specific instance should have been started with

QABatchWV_Open.

Prototype

VOIDRET QAErrorMessage

(INTVAL viStatus,

STRREF rsBuffer,

INTVAL viBuffLen);

Parameters

viStatus Error code.

rsBuffer Buffer to receive error text message.

viBuffLen Maximum length of the buffer (including room for NULL

terminator).

Comments

This function is useful for converting an error code to a short text message that

can be displayed to the user for informational purposes.

It is advised that QAErrorMessage is called after any function which returns an

error code, as the text message might help you identify the cause of the error.

Argument Explanation

147

QASystemInfo

Returns detailed information about the system usage of the QAS Batch API

library.

Prototype

INTRET QASystemInfo

(INTVAL viLineNo,

STRREF rsBuffer,

INTVAL viBuffLen);

Parameters

viLineNo Line number being accessed (or negative if resetting).

rsBuffer Buffer to receive text line.

viBuffLen Buffer length (including room for NULL terminator).

Return values

Either: 0 if call successful

Or: negative for an invalid line number

Comments

You can only call this function once the API has been started.

The system information text contains detailed information about the QAS Batch

API library, how it is configured, and the resources that it has grabbed from the

operating system. The text is split over several lines and so has to be read one

line at a time. A buffer size of 80 bytes will be sufficient to guarantee that no lines

are truncated.

When the first line is read, the library generates an internal copy of the system

information text. It is important that this copy is reset once all the lines have been

read otherwise the allocated memory will not be freed. Below is a C example that

prints the system information text.

Argument Explanation

148

C example that prints out QASystemInfo text:

void PrintSystemInfo(VOIDARG)

{

char sBuffer[80];

int iLineNo;

/* read each line in turn */

for (iLineNo = 0;

QASystemInfo(iLineNo, sBuffer, sizeof(sBuffer)) == 0;

iLineNo++)

{

puts(sBuffer);

}

/* reset in order to free memory */

QASystemInfo(-1, NULL, 0);

}

If you run the example above, you get a result similar to this:

Program: QABWVED
Copyright: Experian Ltd
Release: 4.00(07)
Platform: Windows 32-bit

Libraries: QAKRNXF 2.23(213)
QATOKXD 1.00(3)
QAUFWXF 4.00(208)

QACOMXD 1.01(152
QASLGXD 1.00(3)

QASLHXD 1.00(2)
QASLUXD 1.00(2)

QAHSGXD 3.00(89)
QAGENXD 1.00(4)

QAHSVXD 3.20(84)
QALICXD 1.00(10)

QAHCLXD 3.00(60)
QACDIXD 4.00(317)

QADC2XD 2.40(47)
QADS2XD 2.00(14)

QAWD2XD 2.40(66)
QAUSGXD 4.00(109)

QALL2XD 2.40(81)
QAUTDXD 4.00(129)

QASLCXD 1.00(2)
QATIXXD 4.00(110)

QAZLSXD 1.01(41)

Config: qaworld.ini

149

Section: ALL

Licensed to: <unknown>
Serial No: <none>
Days: No limit

Users: No limit

Dongle: <none>

Prog Dir: C:\Experian\QAS Batch API
Home Dir: C:\Experian\QAS Batch API
Data Dir: C:\Experian\QAS Batch API

Temp Dir: C:\DOCUME~1\chrisr\LOCALS~1\Temp
Log File: <disabled>

Memory: 69451515 (allocs=2592)

Data: 69323428 (free=760)
Blocks: 4816 (free=68)

147

QAS Batch API
Configuration

Before you can perform any searches with the QAS Batch API, you need to

specify how and where QAS Batch API will search for input addresses and the

format in which output addresses are returned.

QAS Batch API bases these processing decisions on a configuration (INI) file.

This file contains many default settings which govern the basic processing that

QAS Batch API does and allows you to define options such as the dataset(s) you

search in, cleaning options, and how the output address should look.

The configuration file which contains these settings by default is called

qaworld.ini. Within this file, configuration information is stored within layouts. You

can create multiple layouts within this configuration file, to encapsulate several

different processing options and address formats.

However, if you would prefer to store layout information separately from other

global settings, you should do so within a new INI file (custom.ini, for example)

and specify its name in your call to QABatchWV_Open.

The default handling of custom INI files is to only load the output formatting

settings as described in "Setting The Output Address Format" on page 172. It is

possible to start Batch API in Session Mode by using the qabwvflags_SESSION

flag in QABatchWV_Startup. In Session Mode all layout settings will be loaded

from the custom INI file.

In addition to layout settings, the file qawserve.ini contains settings pertaining to

the installed datasets. This file is automatically used when the API is initialized.

You should not rename it, move it, or attempt to call it with any of the API

functions.

148

Format Of A Configuration File

A configuration file can contain several layouts, each comprising a set of

instructions. To view a configuration file, such as the main qaworld.ini file, use a

text editor such as Notepad. Do not use a formatting editor such as Microsoft

Word because it will corrupt the configuration file with its own formatting codes if

you save it.

149

The layouts within the configuration file have their titles in square brackets:

[layout name]

For example, the supplied layout for France is called:

[FRX]

It is advised that you do not alter anything within the supplied layouts. To create

alternative settings, copy the layout into a new layout and then make changes to

it.

Within the qaworld.ini file, layout names define the beginning of each layout.

Layout names must be enclosed within square brackets and be left-justified. A

layout ends when a new layout name is declared. The final layout is terminated

by the end of file.

Each layout comprises a set of instructions in the form of keyword assignments,

like this:

keyword=value

A keyword is the name of a setting. It can consist of any combination of letters and

digits in uppercase or lowercase, and it must be followed immediately by an

equal’s sign (=), which introduces the value assigned to the keyword. The value

can be an integer, a string, or a special symbol, depending on the type of setting.

Note that there should be no space between the '=' and value.

Not all entries have to be keyword assignments. You can add comments by

prefixing the comment with a semi-colon (;).

The keyword assignments can come in any order. A typical keyword assignment

looks like this:

AUSAddressLineCount=6

This example tells QAS Batch API to create an output address consisting of six

lines.

You must not alter any keyword assignments in qawserve.ini or qaworld.ini

apart from those documented in this manual.

150

Configuring QAS Batch API

There are three steps to configuring the QAS Batch API process:

1. Ensure that one or more datasets have been installed to the required

location.

2. Specify which of these datasets should be used in address matching, and

how the matching process should proceed.

3. Give QAS Batch API a format in which to return matched addresses.

The first step involves checking settings in qawserve.ini. The remaining two steps

require you to specify keyword values in qaworld.ini.

151

QAWSERVE Settings

Checking Dataset Installation

Open the file qawserve.ini in a non-formatting text editor. This file can be found in

the same directory as the library files.

The standard default settings are listed under [QADefault]. This layout includes a

setting called InstalledData, which can be used to check dataset installation.

You should not need to alter it, but you should check that it meets your

requirements.

InstalledData

InstalledData={identifier},{path}

Default: Must be explicitly set

Purpose: This keyword lists the installed datasets by a three letter identifier and

location. These datasets are the ones installed by the setup program

or copied across from the supplied data CDs/DVDs. If you wish to

change or add to them, you should run the setup program again or

copy them from the supplied medium. Note that if you are also using

Additional Datasets, they do not need to be listed in this setting.

If you have more than one dataset installed, the first dataset appears

directly after the = sign, and each subsequent dataset appears on a

new line preceded by a + sign. For every line that you have specified

here, you should also add a line in the DataMappings setting.

If you need to move a dataset, you should update this setting

accordingly.

Example: If you have installed the UK, Australia, and Netherlands datasets in

C:\Program Files\QAS\Data, this setting would appear as follows:

InstalledData=GBR,C:\Program Files\QAS\Data\

+AUS,C:\Program Files\QAS\Data\

+NLD,C:\Program Files\QAS\Data\

152

DataMappings

DataMappings={identifier},{dataset/group name},{dataset identifier+additional

datasets}

Default: Must be explicitly set

Purpose: This keyword allows you to map combinations of datasets and

additional datasets to use for different cleaning runs. You choose

an identifier and dataset/group name then specify the dataset

and related additional datasets you want to include for each

mapping. The identifier must be a 3-character alphanumeric

code.

If you want to set up more than one mapping, the first should

appear directly after the = sign, and each subsequent mapping

should appear on a new line preceded by a + sign. If you add or

remove datasets in the InstalledData setting, you should

update this setting accordingly.

If you specify multiple additional datasets, you can set the order

of precedence with the DatasetPrecedenceOrder setting.

Example 1: If your InstalledData setting includes the UK, Australia and

Netherlands datasets, and you also have the United Kingdom

Names and Electricity additional datasets, and you want to

search against different combinations of data simultaneously,

you might use this setting as follows:

DataMappings=GBR,United Kingdom,GBR

+GBN,UK With Names,GBR+GBRNAM

+GBE,UK With Electricity,GBR+GBRELC

+GBA,UK With Names And

Electricity,GBR+GBRNAM+GBRELC

+AUS,Australia,AUS

+NLD,Netherlands,NLD

153

Example 2:

Example 3:

If your InstalledData setting includes the UK dataset, and you

also have the United Kingdom Suppression additional datasets,

and you want to search against different combinations of data

simultaneously, you might use this setting as follows:

DataMappings=GBR,United Kingdom,GBR

+GBS,United Kingdom With Suppression,

GBR+GBRABC+GBRABS+GBRMSS+GBRNCA+GBRUSS+GBRMOR

+GBRMPS

+GBM,United Kingdom With Suppression

Movers,GBR+GBRABC+GBRABS+GBRNCA+GBRUSS+GBRGSF

+GBD,United Kingdom With Suppression

Deceased,GBR+GBRMSS+GBRMOR+GBRUSS+GBRTBR

+GBP,United Kingdom With Suppression

Preferences,GBR+GBRMPS+GBRTPS

If your InstalledData setting includes the AUS dataset, and

you also have the Australia With Suppression additional dataset,

and you want to search against different combinations of data

simultaneously, you might use this setting as follows:

DataMappings=AUS,Australia,AUS

+AUX,Australia With Suppression,AUS+AUSMOR

This example is only relevant when using GBR data

with additional Suppression data.

This example is only relevant when using AUS data

with additional Suppression data.

154

CorrectAApiLoc

CorrectAApiLoc={path}

Default: Must be explicitly set

Purpose: This setting is required if you are using the USA or CAN data. The

setting specifies the location of the certified address matching engine

supplied on the supplementary USA or CAN QAS Batch data disk

(Windows) or separately (UNIX). You must ensure that {path} is the

location of the directory containing "CorrectA.dll" (Windows) or the

"libCorrectA " shared object file (UNIX).

You do not need to use this setting if the CorrectA library is in the

same location as your core QAS Batch API libraries.

Example: If the certified address matching engine was copied to the /Data/USA

directory, you would use the following setting:

CorrectAApiLoc=/Data/USA

CorrectADataLocUSA

CorrectADataLocUSA={path}

Default: Must be explicitly set

Purpose: This setting is only required if you are using the USA data. The setting

specifies the location of the supplementary USA QAS Batch data files.

The setting will be set by the installation program on the USA QAS

Batch data disk. If you are a UNIX user or copy the data files

manually, you must ensure that {path} specifies the location of the

parent directory containing the data files.

Example: If the supplementary USA QAS Batch data was copied to the

/Data/USA directory, you would use the following setting:

CorrectADataLocUSA=/Data/USA

This information is only relevant when using USA or Canada data.

This information is only relevant when using USA data.

155

CorrectADataLocCAN

CorrectADataLocCAN={path}

Default: Must be explicitly set

Purpose: This setting is only required for CAN data. It specifies the location of

the supplementary CAN QAS Batch data files. The setting will be set

by the installation program on the CAN QAS Batch data disk. If you

are a UNIX user or copy the data files manually, you must ensure that

{path} is the location of the parent directory containing the data files.

Example: If the supplementary CAN QAS Batch data was copied to the

/Data/CAN directory, you would use the following setting:

CorrectADataLocCAN=/Data/CAN

This information is only relevant when using Canada data.

156

QAWORLD Settings

Defining Processing Options

These settings appear in the qaworld.ini file, which is the configuration file called

with QABatchWV_Open by default.

Settings which are found in the [QADefault] section are general settings which are

specified once and apply to all layouts. Other settings can be specified for each

layout as required, either in qaworld.ini or your preferred layout configuration file.

For more information about configuration files see page 147.

CountryBase

CountryBase={identifier 1} ... {identifier X}

Default: Must be explicitly set

Purpose: This keyword must be specified for each layout in the configuration

file.

This keyword is used to list the data mapping identifiers that QAS

Batch API should use for searching. You can include any of the

mapping identifiers which have been set up with the

DataMappings keyword in qawserve.ini.

The first identifier in the list is made the default. QAS Batch API will

search using that mapping if the country of the input address

cannot be identified, for example if it does not include a country

name. If you do not want to set a default, use the code 'NUL' in

place of the first identifier. The identifiers should appear on the

same line, separated from the next by a space.

Example 1: If you want your QAS Batch API layout to use your AUS data

mapping by default, but also have the option to search using GBR

and DEU mappings, this keyword would be set as follows:

CountryBase=AUS GBR DEU

It is not possible to use multiple core country datasets

together in the same QAS Batch API run; for example,

GBR, APR and LPG, or AUS and AUG. If this setting

contains more than one core dataset from one country, an

error will be returned from the QABatchWV_Open

function. For more information, see page 129.

157

Example 2: You can configure QAS Batch API to run without a default mapping

even if only one country is configured for cleaning. To search using

your IRL mapping but prevent QAS Batch API using it by default,

you would set the keyword as follows:

CountryBase=NUL IRL

This setting means QAS Batch API will only attempt to match the

address if the country is identified. If the country is not identified, a

match type of 'D' is assigned to the record, instead of QAS Batch

API using the default data mapping.

158

CountryRevert

CountryRevert={Boolean}

Default: FALSE

Purpose: This setting controls the process of country spotting.

Country spotting is used by QAS Batch API to identify which dataset

should be searched against. Occasionally, this can result in

matching errors.

For example, if this keyword is set to FALSE (or not present)

country spotting will be active. In this case, the following input

address would lead QAS Batch API to search for an address in

Spain:

Roadside Cottage, Cluer, Isle of Harris, HS3 3EP, Esp

However, if ESP (Spain) data is not present in your CountryBase

setting, this would cause QAS Batch API to return a C match

code"Match Success" on page 30.

Setting this keyword to TRUE disables country spotting and

instructs QAS Batch API to disregard any country identifiers unless

they correspond to a dataset that you have installed. If no

corresponding datasets are present, the country identifier is

disregarded and QAS Batch API will attempt to match the address

against your default identifier only. In the example above, this

would return a successful match if GBR data existed in your

CountryBase setting.

See page 156 for more information about the CountryBase

keyword and the default identifier.

Example: If you want QAS Batch API to restrict matching to countries in the

CountryBase(see page 156), you should set this keyword to

TRUE:

CountryRevert=True

This setting is particularly useful if you know that your input file

contains addresses from one country only, or only from the

countries specified in your CountryBase keyword.

159

LogErrors

LogErrors={Boolean}

Default: FALSE

Purpose: This keyword applies to all layouts and must be specified in the

[QADefault] section of the configuration file.

If this keyword is set to TRUE, QAS Batch API will record all errors in

the log file, which is specified with the LogFile setting. Setting this

keyword to FALSE disables logging.

Example: Use this setting to enable logging:

LogErrors=TRUE

160

LogFile

LogFile={filename}

Default: None

Purpose: This keyword applies to all layouts and must be specified in the

[QADefault] section of the configuration file.

LogFile enables you to specify a log file to which any errors that

occur when you call API functions are written. These errors are only

written if you set LogErrors=TRUE as well as specifying the name

of the file you want to write to with LogFile.

It is recommended that you create a log file when integrating the

API.

Example: The following creates a log file called error.log in the same directory

as the program files.

LogFile=error.log

161

BatchTimeout

BatchTimeout={integer}

Default: 5000

Purpose: This keyword applies to all layouts and must be specified in the

[QADefault] section of the qaworld.ini configuration file.

You can set the length of time in milliseconds that QAS Batch API

spends on a search with this keyword. The timeout that you set

comes into operation with the function QABatchWV_Clean.

The default setting of 5000 sets a timeout period of 5 seconds (5,000

milliseconds).

Example: To set a timeout period of 30 seconds (30,000 milliseconds), make

this assignment:

BatchTimeout=30000

162

CleaningAction

CleaningAction={string value}

Default: Address

Purpose: This keyword must be specified for each layout in the configuration

file.

This keyword determines the action performed by QAS Batch API

when an address has been matched. There are five possible values

for this keyword:

None No address is returned.

Update

postcode

The postal code is checked to see if it has been

recoded.

Address Returns a full address with postal code.

Enhanced Returns a full address plus additional information;

that is, components of the input address which

could not be matched. See below for an example.

Example: The following setting tells QAS Batch API to return non-matched

leading elements of the input address in the output address:

CleaningAction=Enhanced

Given this input address for the Australia dataset:

John Smith, Suite 1, Level 9, 60 Miller St, North Sydney, NSW,

2060

QAS Batch API returns:

John Smith,

Suite 1, Level 9

60 Miller St

North Sydney NSW 2060

If CleaningAction is set to anything except 'Enhanced', the

component 'John Smith' would be returned as an unused address

line (see the function QABatchWV_GetUnusedInput) as it is not

stored in the Australia dataset, and is therefore not part of the

matched address.

This option is not available if USA is the

only dataset configured.

163

SearchLevel

SearchLevel={string value}

Default: Full

Purpose: This keyword can be specified for each layout in the configuration

file.

This keyword controls how intensely QAS Batch API will search for

address matches. You should consider that more stringent matching

will take longer whereas less stringent matching will take less time.

There are three possible values for this keyword:

Full Performs a full search, balancing the quality of

throughput with the time taken. This is the

recommended mode for most situations.

Extended Performs an extensive search to find address matches for

particularly inexact address data. This search mode is

the most thorough and takes the most time.

Verification Performs a rapid lookup of each input address using

key identified address components (such as a

supplied postcode and premise information). This

mode maximizes the throughput of data and is

particularly effective if your address data is relatively

clean.

Example: The following setting tells QAS Batch API to use the recommended

Full search mode:

SearchLevel=Full

This information is only relevant when using GBR or LPG data.

164

CacheMemory

CacheMemory={Integer}

Default: 0

Purpose: This keyword applies to all layouts and must be specified in the

[QADefault] section of the configuration file.

This keyword is used to specify the amount of system memory (in

MB) that QAS Batch API can use for data caching. Caching is

disabled by default, but you can use this keyword to increase the

performance of QAS Batch API by allowing it to use system memory.

If your system has less than 64MB of memory you should not use this

setting.

Example: The following setting would allow QAS Batch API to use up to

1024MB of memory for data caching:

CacheMemory=1024

165

CorrectACacheLevel

CorrectACacheLevel={String}

Default: None

Purpose: This setting determines the level of data caching which should be

used for USA and/or Canadian Batch cleaning. {String} can take one

of the following values:

⚫ ALL (QAS Batch will attempt to cache all the data required)

⚫ NONE (QAS Batch will not cache any of the data required)

⚫ AUTO (QAS Batch will determine how much of the data to

cache).

If you use the ALL setting, you must ensure you have sufficient RAM

available (at least 3GB) otherwise you will receive an out of memory

error. You should also ensure that sufficient memory has been

specified by the CacheMemory setting to cache the address data.

Any other datasets including USA data, will be cached in the

remaining memory.

This information is only relevant when using USA or Canada data.

If you are using the USA dataset, more detailed system requirements and

performance-related tips can be found in the USA Data Guide.

166

NamesTolerance

NamesTolerance={String}

Default: Blank

Purpose: This keyword can be specified for each layout in the configuration

file.

This specifies how strict QAS Batch API should be when matching

names. For a detailed description of the differences between these

options, see "Appendix E: Names Matching Tolerance Levels" on

page 200.

The cleaning process will be faster if you allow fewer errors in the

supplied names information.

The following options are available:

Relaxed Allows several errors in the supplied names.

Standard Allows one or two errors in the supplied names.

This is the recommended value.

Intermediate

(GBR only)

Minor variations in the supplied names are

permitted.

Exact No errors in the supplied names are permitted.

Example: The following setting means that QAS Batch API does not allow any

errors in the input name information:

NamesTolerance=Exact

This information is only relevant when using GBR or AUS data, with

additional Names or Suppression data.

167

OemCharacterSet

OemCharacterSet = {String} [NoDiacritics]

Default: ANSI

Purpose: This keyword applies to all layouts and must be specified in the

[QADefault] section of the configuration file.

The QAS Batch API includes support for character sets that contain

non-standard characters, such as diacritics (e.g. accents and

umlauts). The API also provides the ability to remove diacritic

characters on address output.

String indicates the generic character family. If 'NoDiacritics' is

specified, all diacritic characters are removed on output from API

routines.

The following character set families are supported by QAS Batch API.

They are 8-bit character sets and can support diacritics and multiple

code pages:

Family Description

ANSI The character sets as defined by the

American National Standards Institute.

ASCII As above but without diacritics.

DOS DOS code page 850.

168

DatasetPrecedenceOrder

DatasetPrecedenceOrder={additional dataset}

Default: Blank

Purpose: This keyword can be specified for each layout in the configuration file. If

you have configured more than one additional dataset in any line of the

DataMappings setting, this keyword can be used to specify the

precedence order.

QAS Batch API matches an input address against each additional

dataset individually. In cases where equally good matches are found

in multiple configured datasets, but the matched addresses are

different, you can specify the precedence order of which dataset

match to return. If you do not specify the precedence order with this

setting, then QAS Batch API will return a partial match including only

the elements common to all datasets.

Example: If you have a GBR data mapping which includes Electricity, Names

and Business data, you might use this setting as follows:

DatasetPrecedenceOrder=GBRELC

+GBRNAM

+GBRBUS

169

Certification

Certification={Boolean}

Default: Yes

Purpose: This setting determines whether QAS Batch should run in Certified

mode.

For the USA dataset,certified mode ensures that the results conform

to the CASS rules, including the mandatory use of Delivery Point

Validation (DPV).

In certified mode, QAS Batch API will return a +4 code only when the

address has been DPV-confirmed. If an address is not DPV

confirmed, a +4 code will not be returned, and by extension, any

DataPlus items you have configured as part of the address output

format may not be returned either.

The certified cleaning mode includes USPS SuiteLink as a standard

part of the CASS certified cleaning process. This uses USPS

SuiteLink data to enhance your organization addresses where

possible.

For the AUS dataset, certified mode ensures that the results conform

to the AMAS rules, and Address Delivery Point Identifier (DPID) or

Default Identifier (DID) is allowed to be returned in the output.

Example: If you want QAS Batch to run in Certified mode, use the following:

Certification=Yes

This information is only relevant when using USA or AUS data.

170

Setting The Input Address Format

The two settings InputLineCount and InputLineN should be set up in each

layout in qaworld.ini, or your preferred layout configuration file, to describe the

contents of the input address fields as they are passed into the QAS Batch API

engine. Doing so can enhance engine processing and increase the accuracy

and speed of address matching.

InputLineCount

InputLineCount={integer}

Default: Blank

Purpose: Use this setting to define the number of lines your input addresses

contain. The format of each individual address line is specified with

the InputLineN setting. Note that any lines not covered by your

specified input address format will not be constrained to match to

specific address element types.

Example: The following tells QAS Batch API that each input address contains

four lines:

InputLineCount=4

InputLineN

InputLine1={element list}

InputLine2={element list}

...

InputLineN={element list}

Default: Blank

Purpose: This specifies which address element is to appear on which line in

the input address. If you know that a line in your database always

contains the same type of address element, (for example, if line 4

always contains a town name), you can mark that line with an

element code. This improves the speed and quality of matching.

{element list} represents a comma-separated list of element codes,

either dataset-specific or generic. By specifying element codes, you

tell the QAS Batch API which elements to expect on that line (if the

elements exist in the matched address).

171

It is important not to supply non-address information to the QAS

Batch API (where possible), as this may compromise the address

matching process. In particular, supplying non-address numeric

values (such as DPIDs in Australia) can cause confusion when

matching against premises information. If your data includes non-

address information which cannot be identified using a generic or

dataset-specific element code, then it should not be supplied to the

QAS Batch API.

Example: The following instructs QAS Batch API to expect premises details on

line 1 of the input address:

InputLine1=P00

The generic element codes are listed below, in the order in which they will appear

in a formatted address (unless you fix them in a different order on the address line).

Order Element Code Description

1 N00 Name

2 O00 Organisation

3 P00 Premises

4 S00 Street

5 B00 PO box

6 L00 Locality

7 C00 Postal code

8 X00 Country name

See the Data Guide supplied with your data for a list of dataset-specific element

codes.

If you are using QAS Batch API with Suppression data, you must

set at least one of the input lines to contain generic names information.

If you are using TPS data, you must also ensure that one of the input

lines contains a telephone number.

172

Setting The Output Address Format

These settings appear in each layout in the qaworld.ini file, which you should call

with QABatchWV_Open. The keywords in this section can be prefixed by

[identifier]. This makes it possible to define address formats for more than one

data mapping within a single configuration layout. Identifiers are set up using the

DataMappings keyword. For example, the setting CapitaliseItem would

become AUSCapitaliseItem for the default Australian data mapping.

See "DataMappings" on page 152 for more information.

AddressLineCount

[identifier]AddressLineCount={integer}

Default: 0

Purpose: This defines the number of lines in the formatted output address.

The format of each individual line is specified with the

AddressLineN keyword.

The number of lines you specify should include any lines of

address and DataPlus information.

Example: The following setting tells QAS Batch API to produce formatted

output addresses of six lines for the 'AUS' data mapping.

AUSAddressLineCount=6

AddressLineN

[identifier]AddressLine1=W{width},{element list}

[identifier]AddressLine2=W{width},{element list}

...

[identifier]AddressLineN=W{width},{element list}

Default: Blank

173

Purpose: This specifies which address element or DataPlus information is to

appear on which line. W signifies that the number that follows it is

the maximum width of the line in characters, and {element list} is

a comma-separated list of element code. Address element codes

are listed in the Data Guide supplied with your dataset. If you do

not specify {element list} QAS Batch API will automatically spread

the standard address over the available lines. By specifying

element codes, you force QAS Batch API to place the elements on

a particular line (if the element exists in the matched address).

By default, if an input address contains a recognized alternative

version of an official address element it will be replaced by the

official version. To configure QAS Batch API to retain the version in

the input address, append the element with a #. For example,

NZLAddressLine3=L21#.

If you want to return DataPlus information, use the base name

and the element name in place of an address element (see

example 2).

You can allow QAS Batch API to insert other suitable elements

before, after or between fixed elements by using the format

specifier '...'.

Example 1: The following instructs QAS Batch API to give line 1 of the 'NZL'

output address a maximum width of 30 characters:

NZLAddressLine1=W30,S21,...

The Whole Street element is fixed to the line, and any subsequent

elements can also appear on the line if they fit there.

Example 2: This example tells QAS Batch API to give line 6 of the 'AUS' output

address a maximum width of 40 characters, and fix the description

part of the MOSAIC DataPlus set to that line:

AUSAddressLine6=W40,AUSMOS.Desc

CapitaliseItem

[identifier]CapitaliseItem={element list}

Default: Blank

Unless explicitly configured, names information will always

precede address information.

174

Purpose: This keyword defines which address elements should appear in

upper case in the formatted address. The value of the keyword is a

list of element codes separated by spaces.

Example: The following setting means that the building name and country

name elements will be capitalized:

AUSCapitaliseItem=P21 X11

AbbreviateItem

[identifier]AbbreviateItem={element list}

Default: Blank

Purpose: This keyword defines which address elements should be

abbreviated in the formatted address. The value of the keyword is a

list of element codes separated by spaces.

Example: The following setting means that the Australian state name will be

abbreviated:

AUSAbbreviateItem=L12

175

ConditionalFormat

[identifier]ConditionalFormat={text string}

Default: ExperianOrgPref

 NormCity

Purpose: This setting has a different function depending on the dataset being

used.

For the GBR with additional Business dataset this setting allows the

user to specify whether to display the PAF or Experian organisation

data, or a combination of both.

There are four possible values for this keyword:

ExperianOrgPref

(default)

The Experian organisation name takes priority,

but the PAF organisation name will be used if

there is no Experian equivalent for the address.

ExperianOrgOnly Only Experian organisation names will be

returned, and PAF organisation names will be

suppressed if there is no Experian equivalent

for the address.

PostOrgPref The PAF organisation name takes priority, but

the Experian organisation name will be used if

there is no PAF equivalent for the address.

PostOrgOnly Only PAF organisation names will be returned,

and Experian organisation names will be

suppressed if there is no PAF equivalent for the

address.

For the USA dataset this setting allows the user to specify whether to

return the full city name or the abbreviated city name.

There are two possible values for this keyword:

NormCity (default) The full city name will be returned.

AbbCity The abbreviated city name will be returned. This

will have a maximum of 13 characters.

This information is only relevant when using GBR with additional

Business data, or USA data.

176

AbbreviateAddr

AbbreviateAddr={Boolean}

Default: No

Purpose: This setting allows you to limit the first line of output addresses to a

maximum of 30 characters. This setting works with QAS Compatibility

Formatting mode and in CASS Certified Mode.

Example: If you want to limit the first line of output addresses to a maximum of

30 characters, use the following:

AbbreviateAddr=Yes

This information is only relevant when using USA data.

177

CompatibilityFormatting

CompatibilityFormatting={Boolean}

Default: No

Purpose: This setting determines whether QAS Batch should run in QAS

Compatibility Formatting mode. Compatibility Formatting mode is not

certified, and will not use Delivery Point Validation, but does offer

increased flexibility in matching and output address formatting.

Example: If you want QAS Batch to run in QAS Compatibility Formatting Mode,

use the following:

CompatibilityFormatting=Yes

MultiValueDPSeparator

MultiValueDPSeparator={string}

Default: |

Purpose: This keyword can be specified for each layout in the configuration file.

If you are using United Kingdom with Gas or Electricity data, QAS

Batch API will return all multiple meter numbers. This keyword can be

used to change the default delimiter.

The delimiter cannot be alphanumeric. The API will verify the setting

and use the default character if an invalid character is used.

Example: If you want the multiple meter numbers to be returned separated by a

comma, use the following:

MultiValueDPSeparator=,

This information is only relevant when using USA data.

178

QALICN Settings

License key information is located in qalicn.ini. This .ini file can be used for

adding, deleting, and viewing license information.

The license keys can be found on the dispatch note supplied with the data.

Each license key should be inserted on a separate line.

179

Appendix A: Error Code

Listing

Below is a full list of error codes and their descriptions. Call the system function

QAErrorMessage to retrieve the top level message associated with the returned

error code, and QAErrorLevel to ascertain whether the error is serious or a

warning. If you require more specific error information, QAErrorHistory may be

repeatedly called.

Code Internal name Meaning

-1000 qaerr_FATAL Fatal error

-1001 qaerr_NOMEMORY Out of memory

-1002 qaerr_INITINSTANCE Invalid multithreading instance

-1005 qaerr_INITOOLARGE INI file too large

-1006 qaerr_ININOEXTEND Could not extend INI file

-1008 qaerr_FILETOOLARGE File too large

-1009 qaerr_FILECHGDETECT Cannot detect file changes

-1010 qaerr_FILEOPEN File not found

-1011 qaerr_FILEEXIST File already exists

-1012 qaerr_FILEREAD File read failure

-1013 qaerr_FILEWRITE File write failure

-1014 qaerr_FILEDELETE Could not delete file

-1016 qaerr_FILEACCESS File access denied

It is strongly recommended that checks for specific return errors are not

hardcoded into your integration.

180

Code Internal name Meaning

-1017 qaerr_FILEVERSION Incorrect version of data file

-1018 qaerr_FILEHANDLE Maximum number of files open

-1019 qaerr_FILECREATE Could not create file

-1020 qaerr_FILERENAME Could not rename file

-1021 qaerr_FILEEXPIRED Data file has expired

-1022 qaerr_FILENOTDEMO Can only access demonstration

data

-1023 qaerr_FILETIMEGET Failed to obtain file timestamp

-1024 qaerr_FILETIMESET Failed to modify file timestamp

-1025 qaerr_READFAIL Disk read failure

-1026 qaerr_WRITEFAIL Disk write failure

-1027 qaerr_BADDRIVE Invalid drive

-1028 qaerr_BADDIR Invalid directory

-1029 qaerr_DIRCREATE Could not create directory

-1030 qaerr_BADOPTION Invalid command line option

-1031 qaerr_BADINIFILE Could not locate INI file

-1032 qaerr_BADLOGFILE Could not create log file

-1033 qaerr_BADMEMORY Invalid memory configuration

-1034 qaerr_BADHOTKEY Invalid hot key

-1035 qaerr_HOTKEYUSED Hot key already in use

-1036 qaerr_BADRESOURCE Could not locate language file

-1037 qaerr_BADDATADIR Invalid data directory

-1038 qaerr_BADTEMPDIR Could not create temporary

directory

-1040 qaerr_NOTDEFINED Entry not defined

-1041 qaerr_DUPLICATE Entry duplicated

-1042 qaerr_BADACTION Invalid action

-1045 qaerr_BADDATE Invalid date or time

-1046 qaerr_BADTIMEZONE Invalid time zone

-1050 qaerr_CCFAILURE Copy control failure

-1051 qaerr_CCBADCODE Invalid copy control code

181

Code Internal name Meaning

-1052 qaerr_CCACCESS Copy control access denied

-1053 qaerr_CCNODONGLE Dongle not configured

-1054 qaerr_CCNOUNITS No units left on meter

-1055 qaerr_CCNOMETER Meter not initialized

-1056 qaerr_CCNOFEATURE Feature not supported

-1057 qaerr_CCINVALID SoftKey integrity failure

-1058 qaerr_CCNODCHKFAIL Node lock check failure

-1060 qaerr_CCINSTALL Copy control not installed

-1061 qaerr_CCEXPIRED Allowable time expired

-1062 qaerr_CCDATETIME Invalid copy control date or time

-1063 qaerr_CCUSERLIMIT Number of concurrent users

exceeded

-1064 qaerr_CCACTIVATE Copy control installed but not

activated

-1065 qaerr_CCBADDRIVE Invalid copy control drive

-1066 qaerr_CCREGISTER Product must be registered

-1070 qaerr_UNAUTHORISED Not authorized

-1074 qaerr_NOLOCALEFILE Locale file not found

-1075 qaerr_BADLOCALEFILE Invalid locale file

-1076 qaerr_BADLOCALE Unknown language/country

-1077 qaerr_BADCODEPAGE Unknown code page

-1078 qaerr_RESOURCEFAIL Resource lookup failure

-1080 qaerr_NOTHREAD Could not create thread

-1081 qaerr_NOTLSMEMORY Out of thread-local-storage

-1090 qaerr_NOTASK Could not create task

-1091 qaerr_LOADLIBRARY Could not load DLL or shared

object

-1094 qaerr_API_WORD Input value exceeds 16 bits

-1095 qaerr_API_DWORD Input value exceeds 32 bits

-1096 qaerr_CHARSET Invalid input characters

182

Code Internal name Meaning

-1097 qaerr_BUFFERTRUNC Buffer value truncated

-3801 qaerr_FORMATSYNTAX Incorrect formatting syntax

-3802 qaerr_TOOMANYADDRLINES Too many address lines requested

-3803 qaerr_INVALIDADDRESSLINE Address line out of range

-3804 qaerr_NOFORMATSPEC No format spec in INI file

-3805 qaerr_FORMATOVERFLOW Element(s) have overflowed

-3806 qaerr_FORMATTRUNCATED Element(s) are truncated

-3809 qaerr_DPFAILURE One or more DataPlus sets failed

to open

-3811 qaerr_

COUNTRYBASEMISMATCH

Invalid data mapping in layout

-4362 qaerr_NODATAMAPPINGS No valid data mappings were

found

-4363 qaerr_MISSINGDATAMAP Expected data mapping not

available

-4364 qaerr_NOLAYOUTSELECTED No layout selected

-4576 qaerr_DATASETSAMECOUNTRY Multiple base datasets configured

for the same layout

-4577 qaerr_NZLDELMISSING New Zealand Deleted Records

additional data missing

-4599 qaerr_

INPUTLINECOUNTREQUIRED

No InpuLineCount setting has

been found for Suppression

-4587 qaerr_NOMODECHANGE Estimate Mode cannot be changed

when any counter reports are open

-4588 qaerr_MORECLICKSNEEDED The function being called cannot

be run until more clicks have been

used

-4589 qaerr_BADAUDITCODE The audit code entered is invalid

-4593 qaerr_

NOACTIVESUPPRESSIONSETS

No active Suppression datasets

found

-4594 qaerr_

NOSUPPRESSIONHIERARCHY

Suppression hierarchy not found

183

Code Internal name Meaning

-4595 qaerr_DATAPLUSNOTAVAILABLE Suppression DataPlus configured

when Suppression is switched off

-4596 qaerr_INVALIDHIERARCHY Hierarchy must contain all active

Suppression datasets

-4597 qaerr_

MULTIPLEDATAPLUSPERLINE

Multiple suppression DataPlus per

line with permanent hierarchy

enabled

-4598 qaerr_

SUPPRESSIONNAMEREQUIRED

One of the input fields must contain

names information

-4785 qaerr_DDFDEFINITION Definition is incorrect in data

-4786 qaerr_INVALIDPRIORITY Priority rules is invalid

-4789 qaerr_PRIORITYEVALAMBIGUITY Priority rule evaluation is

ambiguous

-4960 qaerr_SLCASFUNC Invalid function call to

CorrectAddress engine

-4961 qaerr_SLCASFUNCMAP CorrectAddress function not

mapped

-4962 qaerr_SLCASDATAEXPIRED CorrectAddress data expired

-4963 qaerr_SLCASDATA Failed to open CorrectAddress

data files

-4964 qaerr_SLCASEWSDATA Failed to open EWS files

-4965 qaerr_SLCASSYSTEMERROR CorrectAddress API issued a

system error

-4966 qaerr_SLCASOUTOFMEM CorrectAddress API out of memory

-4968 qaerr_SLCASINVALIDLIC Invalid DPV licence key

-4969 qaerr_SLCAPIEXPIRED CorrectAddress engine has

expired

-8601 qaerr_NODEFAULTCOUNTRY Default country not specified

-8602 qaerr_NOINSTALLEDCOUNTRIES No installed countries found

-8603 qaerr_DEFAULTNOTINSTALLED Default country not installed

-8604 qaerr_INVALIDPRIORITY Error in priority string

-8605 qaerr_CALLPENDING A call is pending

184

Code Internal name Meaning

-8606 qaerr_NOTRUNNING The API is not running properly

-8608 qaerr_APIABORTED The API has shut down

-8609 qaerr_RUNNING The API is already running

-8610 qaerr_NOHANDLES No free API handles

-8611 qaerr_BADHANDLE Handle out of range

-8612 qaerr_NOSEARCHRESULTS Attempt to retrieve uninitialized

results

-8613 qaerr_OUTOFRANGE Line is out of range

-8614 qaerr_NOCOUNTRYFILE Country resource file not found

-8615 qaerr_COUNTRYRANGE Country out of range

-8616 qaerr_NOCOUNTRIES No countries are active

-8617 qaerr_LAYOUTRANGE Layout out of range

-8618 qaerr_INVALIDCOUNTRY Country name was not found

-8619 qaerr_COUNTRYVERSION Data file version incompatible with

product

-8620 qaerr_BADPARAMETER Invalid API function parameter

supplied

-8621 qaerr_PARAMETERTRUNCATED API function parameter truncated

-8622 qaerr_TOOMANYINPUTLINES Input line configuration limit

exceeded

-8623 qaerr_INVALIDINPUTITEM Invalid input line item configured

-8625 qaerr_INVALIDLAYOUT Specified layout is invalid

-8626 qaerr_LICENSINGERROR Licensing error has occurred with

one or more datasets

-8701 qaerr_DATANOTINITIALISED Data not initialized

-8702 qaerr_

COUNTRYALREADYINSTALLED

Data unexpectedly initialized

-12001 qaerr_TOKFUNC Unknown tokenizer API request

-12002 qaerr_TOKNOKERNEL Kernel not initialized

-12003 qaerr_TOKNOCOUNTRYFILE Cannot find country.ini

185

Code Internal name Meaning

-12004 qaerr_TOKBADCOUNTRYFILE Bad country.ini format

-12005 qaerr_TOKTOOMANYLINES Too many input specification lines

-12006 qaerr_TOKINVALIDINPUTITEM Invalid input item

-12007 qaerr_TOKPOSTCODEFORMAT Invalid postcode format

-12008 qaerr_TOKFOREIGNCITIES Unable to load foreign cities

-12009 qaerr_TOKCOUNTRYSPOT Unable to perform country spotting

-12010 qaerr_TOKCITYSPOT Unable to perform city spotting

-12101 qaerr_SLUFUNC Invalid USPS server request

-12102 qaerr_SLUNOHK No housekeeping instance present

-12103 qaerr_SLUNOUSPSDATA No USPS data present

-12104 qaerr_SLHNOKERNEL Kernel has not been started

-12105 qaerr_TPAPINOTLOADED Required third party API not loaded

186

Appendix B: Data
Checker Utility

You can check the integrity of Experian Data Quality data files using quchkn.exe.

Quchkn.exe is called as follows:

Windows Syntax QUCHKN (filespec)

QUCHKN -log -?

show all command line options

UNIX Syntax QUCHK (filespec)

QUCHK -log -?

show all command line options

Example QUCHKN H:\QAS\DATA*.*

Description Performs an integrity check on selected Experian Data

Quality data files. Uses a CRC (Cyclic Redundancy Check)

to verify that the contents of the data files are not corrupt. Can

be used to check for problems with the data or file corruption.

Windows options The buttons on the dialog once the application has been

launched can be used to perform the following actions:

Add... Add a data file to the list.

Remove... Remove the selected file from the list.

Check File Check the currently-selected file.

Check All Check all the files in the list.

UNIX options The following command-line arguments are available:

-INI:<file> Specify configuration file.

-SECTION:<file> Specify configuration section.

-DATADIR:<dir> Specify directory for data files.

-LOG:<file> Specify log file.

-ERRORS Enable error logging.

187

Appendix C:
Suppression Data –

Uses and Benefits

Suppression data contains additional information associated with an address.

Specifically, you can clean your records against Suppression data and then return

relevant Suppression DataPlus information for any matching addresses in your

database. This makes it possible to easily see any names and addresses which

may not be useful to your business, and also to enhance your data with additional

information.

There are a number of reasons why certain customers’ addresses may be

unsuitable for business use. These depend upon the particular Suppression set

in use:

Movers

 NCOA Update

 NCOA Suppress

Absolute Contacts (ABC)

 Absolute Movers (ABS)

Goneaway Suppression File (GSF)

This information is only relevant when using GBR or AUS data with

additional Suppression data.

It is not possible to perform a clean against multiple datasets and one or more

Suppression dataset(s) at the same time.

188

This data contains details of those people who have recently changed

address. Some Suppression data also provides associated forwarding

addresses.

Deceased

 Mortality Suppressions (MSS)

 Mortascreen (MOR)

NCOA Suppress

 The Bereavement Register (TBR)

Australia Mortalities (AUSMOR)

This data contains the names and address details of people who have died.

Preferences

 Mailing Preference Service (MPS)

Telephone Preference Service (TPS)

This data contains the details of people who have opted not to receive

unsolicited mail / telephone calls.

For detailed information about the types of Suppression data that are available

with your dataset, refer to the Additional Data Guide that shipped with your

Suppression data.

Suppression data can be used in a variety of ways, depending on your business

needs. This section describes four of the most suitable and efficient uses of

Suppression data within QAS Batch API:

⚫ Generating a high quality mailing list;

⚫ Generating a complete mailing list;

⚫ Generating a Suppression report;

⚫ Adding Suppression information to your data.

189

Generating A High Quality Mailing List

Effective use of Suppression data enables you to save time and money, by

excluding from your mailing list those households or individuals who will choose

not to respond, or who are unable to do so.

Suppression data can be used to flag those people who have moved, who are

deceased, or who have expressed a preference not to be contacted. In addition,

you can filter out poor quality addresses which cannot be matched with

confidence against the official postal address files. Removing these details from

your mailing list will reduce the size of the list, while retaining its effectiveness.

To generate a high quality mailing list, follow these steps:

1. Clean your data against the official postal address files, in order to maximize

the chance of delivery. The addresses in your database may be cleaned

while retaining non-address information such as names and departments,

depending upon the nature of the records.

2. Clean your data against your Suppression dataset.

3. Produce a file containing only those addresses which are likely to be worth

mailing.

This should include both of the following:

⚫ Addresses which produce Good or Verified matches when cleaned against

the official address files. See Match Success for more information about

match results.

⚫ Records which were not matched against Suppression data.

Generating A Complete Mailing List

To generate a complete mailing list, use QAS Batch API to produce a mailing list

containing all addresses from your original database, regardless of quality,

omitting only those which were matched against Suppression data.

This list will retain all other input records from your database, including those

addresses which could not be matched against the official postal address files.

To keep your address records up to date, it is recommended that you clean

your database periodically, and update all Suppression information stored

within it.

190

Generating A Suppression Report

To generate a Suppression report, use the QABatchWV_CounterReport function

in file mode, using the command:

batwv <input file name> <output file name> <report file name>

This function is described in terms of how to perform it using the C test harness

supplied with QAS Batch; however, you may choose to use your own

implementation instead.

Adding Suppression Information To Your Data

You may find it useful to add Suppression information to your current database, in

order to carry out a statistical analysis of your data.

If you have configured Suppression DataPlus in your layout and an address

record in your database has been matched against a configured Suppression

DataPlus set, you will be charged a click for that match. You will be able to see

which Suppression set the record has been matched against and will also be

able to view DataPlus information such as date of death.

Refer to the Suppression Additional Data Guide that shipped with your data for

more information about Suppression DataPlus.

191

Appendix D: Analysing
Costs of Suppression

Data

If you have cleaned your data against one or more Suppression dataset(s), you

will be invoiced for the number of clicks you have used. See About Clicks for more

information.

Suppression data can be paid for in multiple ways and will depend on the meter

types associated with each suppression dataset, and which actions are

performed. Some datasets will include all of these different meter types, while

others may include only one. They include:

⚫ Permanent Flagging

⚫ One-Off Suppression

⚫

 Dual Suppression

⚫ Tracking Suppression

For GBR Suppression, the cost will also be affected if you have activated the

Suppression Hierarchy (see page 194).

192

About Clicks

A click is a single count against a meter.

 Depending on how an address record is matched against a Suppression

dataset, you may be charged for a permanent, one-off (temporary), tracking or

dual click. If an address record matches more than one Suppression dataset, the

order in which matches should be used (and therefore your costs) depends on

the options set in the Suppression Hierarchy.

 If an address record is matched against a Suppression dataset, you will

be charged for a dual click.

Permanent Clicks

Users will be charged a permanent click if all of the following conditions are met:

⚫ The user has set the UseSuppression ini setting to On. Refer to the United

Kingdom with Suppression Data Additional Data Guide for more information

about this setting.

⚫ The user has configured QAS Batch API to return at least one Suppression

DataPlus item.

⚫ An address record has matched to the Suppression dataset which the

configured DataPlus set belongs to.

For more information about configuring Suppression and about Suppression

DataPlus, see the United Kingdom with Suppression Additional Data Guide.

One-Off Clicks

This information is only relevant when using GBR data with additional

Suppression data.

This information is only relevant when using GBR data with additional

Suppression data.

193

Users will be charged for a one-off (temporary) click if all the following conditions

are met:

⚫ The user has set the UseSuppression ini setting to On. Refer to the United

Kingdom With Suppression Additional Data Guide for more information about

this setting.

⚫ Address records in their database have only matched against Suppression

datasets for which DataPlus is not configured. The user will not be told which

Suppression dataset has been matched, and obviously no DataPlus

information will be returned.

Dual Clicks

Dual meters are used when there is no price difference between Permanent and

One-Off suppression. If this option is available for a dataset it will usually be the

only meter available.

The user will be charged a dual click if they have set the UseSuppression ini

setting to On (refer to the Suppression Additional Data Guide for more

information); and either

⚫ They have configured QAS Batch API to return at least one Suppression

DataPlus item and an address record has matched to the Suppression

dataset which the configured DataPlus set belongs to.

or:

⚫ An address record in their database has matched to the Suppression dataset

without having any output DataPlus items configured. The record is

suppressed but no DataPlus information is returned.

For more information about configuring Suppression and about Suppression

DataPlus, see the Suppression Additional Data Guide that shipped with your

data.

Tracking Suppression

This information is only relevant when using GBR data with Tracking

Suppression data.

194

When using Tracking mode with the NCOA Update or Absolute Contacts

Suppression datasets, users will be charged one tracking click for returning a

forwarding address. Furthermore, if the forwarding address matches against other

Suppression datasets, these matches will be charged according to the criteria for

permanent and one-off clicks. See the United Kingdom With Suppression

Additional Data Guide for more information about NCOA Update and Absolute

Contacts data.

Suppression Hierarchy

If an address record matches more than one Suppression dataset, the order in

which matches should be used (and therefore your costs) depends on the options

set in the Suppression hierarchy.

Once a record has been matched against a dataset in the hierarchy, the others

further down the list are not considered.

The Suppression hierarchy therefore allows the user to do the following:

⚫ Control in what order they will be charged for clicks, which will minimize their

total expenditure;

⚫ Specify some types of Suppression data (e.g. mortalities) above others (e.g.

goneaway or movers), so that they can filter some types of Suppression

matches from their database without removing others completely.

Notes On Suppression Hierarchies

⚫ Hierarchies are specified within layouts.

⚫ The SuppressionHierarchy ini setting is used to specify the datasets that

are in the hierarchy, and their order. If the hierarchy is not specified, an error

will be returned.

⚫ The datasets listed in the hierarchy must match the sets in the Suppression

ini setting, or an error will be returned.

This information is only relevant when using multiple GBR Suppression

additional datasets.

195

⚫ The Suppression hierarchy is always used for one-off (temporary) clicks, but

is optional for permanent ones. The PermanentHierarchy ini setting is used

to activate the hierarchy for permanent clicks.

⚫ When a permanent hierarchy is active, you will only be charged for the

highest matching set with DataPlus configured, and DataPlus information will

only be returned for that set.

⚫ When you are using NCOA Update or Absolute Contacts data in tracking

mode, this operates outside of the permanent Suppression hierarchy, as

described below.

Tracking Hierarchy

NCOA Update and ABC data have their own Tracking Hierarchy. The Tracking

Hierarchy determines which of the Tracking datasets selected records are

searched against first and is completely separate from the Suppression

Hierarchy.

If you have returned a match against NCOA Update or Absolute Contacts (ABC)

data, these records will not be suppressed. Instead, the forwarding address will

replace the original address, ready to be exported or committed back to your

database.

You will be charged once for each match against the NCOA Update or ABC data

which returns a forwarding address. Subsequent matches against other datasets

will be made against the forwarding address, rather than against the previous

(obsolete) address.

Paying For Suppression Data

There are a number of steps which you must follow in order to pay for your use of

Suppression data. These functions are described in terms of how to perform them

using the test harness supplied with this product; however, you may choose to

use your own implementation instead.

1. Install QAS Batch API With Suppression data. For more information about

how to do this, see "QAS Batch API Installation" on page 5.

Refer to the United Kingdom with Suppression Additional Data Guide for

more information about Suppression hierarchy settings.

196

2. Use the QABatchWV_GetAuditCode function to extract a text-based audit

code from the counters file on the disk where QAS Batch API is installed.

To extract the audit code using the C test harness, start the test harness using

the following syntax:

batwv –audit

The harness will not start as normal; instead it will output the command to the

standard output channel, which can then be displayed or piped to a text file if

required. The following command will output text to <filename> instead of

displaying it:

batwv –audit > <filename>

3. Send the audit code by email to uk.support.qas@experian.com.

4. Experian Data Quality will process the audit code and will return a counter

update code to you by email.

5. Call the QABatchWV_ApplyUpdateCode function and enter the update code

received from Experian Data Quality in order to populate the counters file with

specified post-pay meters for each supported Suppression dataset.

As this is a one-off action, it can be performed as part of your initial API

integration, or by using the C test harness. However, the code will be

supplied in case you want to integrate the meter creation yourself at a later

date; for example, if your existing counters file becomes corrupted or if you

want to add extra Suppression DataPlus sets at a later date.

To create a meter, use the following switches when starting the test harness:

batwv –apply <update code>

batwv –applyfile <filename>

where <filename> is the name of a file containing the counter update code as

supplied by Experian Data Quality.

In the above cases the harness will not start as normal but will attempt to

apply the update (printing any errors to the standard output channel).

6. The QAS Batch API product is then unlocked for use and begins to count the

clicks that will be charged for matches against Suppression data.

You should send your audit code to uk.support.qas@experian.com on a

monthly basis; you will then be invoiced according to the number of clicks

used.

mailto:uk.support.qas@experian.com
mailto:uk.support.qas@experian.com

197

Managing Suppression Costs

Though payment is submitted to Experian Data Quality on a month by month

basis, often it is useful to have more specific payment information available. For

example, it may be desirable to check how many Suppression clicks have been

used since the last time an audit code was sent to Experian Data Quality, or how

much one specific Suppression run would cost. The following three functions can

be used to determine more accurate payment information:

⚫ To-Date Billing

⚫ Temporary Counters

⚫ Estimate Mode

To-Date Billing

To-Date Billing allows you to check the expenditure of an installation of QAS

Batch API without having to send the audit code to Experian Data Quality. This

has two advantages: that expenditure can be checked throughout the month, as

opposed to only at the end of the month, and that the information can be derived

locally and therefore immediately.

To use To-Date Billing, follow these steps:

1. Call the QABatchWV_GetAuditCode function to return the current audit

code.

2. Call QABatchWV_CompareAuditCode, using the current audit code and the

previously generated audit code (this can be the audit code previously sent to

Experian Data Quality, or one created since).

This function will output an XML report into the specified buffer.

The XML report contains information on click usage and Suppression, which will

allow a cost estimation to be calculated.

This report does not contain statistics from your QAS Batch API clean.

198

Temporary Counters

If accurate payment information is required during the cleaning and suppression

of a smaller part of a database, temporary counters can be created. Reports can

then be run, incorporating only the cleaning and payment information that has

been accumulated since the creation of the counters.

Once created, a counter is given a handle and can then be used to return an XML

report at any time, as many times as needed.

To create and use temporary counters, follow these steps:

1. Call the QABatchWV_CounterOpen function.

2. Run QAS Batch as normal. Suppression is optional.

3. Call the QABatchWV_CounterReportLength function and create a buffer of

the correct size for the XML report.

4. Call the QABatchWV_CounterReport function. The XML report will be

returned into the specified buffer.

5. Call the QABatchWV_CounterClose function when you have created all the

reports needed.

Estimate Mode

If it is required to determine the estimated price of a Suppression run without

being committed to paying for the clicks, an instance of the API can be run in

Estimate mode.

While in Estimate mode, Counters can be opened and closed, QAS Batch API can

be run as normal, and reports can be created. However, no address will be

cleaned, all items will return the match code A0000000000000000000, and the

formatted line count will be zero.

The QAS Batch API statistics will be populated with the match details as if the run

has taken place, and the number of suppressed addresses and cleaning

information will be displayed.

Once the counter has been closed, all the information that has not been stored

in an XML report will be lost. All reports required must be generated before the

counter is closed.

199

To run the instance of the API in Estimate Mode, follow these steps:

1. Call the function QABatchWV_RunMode, passing a non-zero value into the

parameter viEstimateMode.

2. Call the QABatchWV_CounterOpen function.

3. Run QAS Batch as normal.

4. Call the QABatchWV_CounterReportLength function and create a buffer of

the correct size for the XML report.

5. Call the QABatchWV_CounterReport function. The XML report will be

returned into the specified buffer.

6. Call the QABatchWV_CounterClose function when you have created all the

reports needed.

7. Call the function QABatchWV_RunMode, passing zero into the

viEstimateMode parameter.

Estimate Mode will now finish. Information in any unclosed counters will be

lost.

Troubleshooting

For information about possible errors that may be returned when you use QAS

Batch API with Suppression data, see -4593 to -4597 of the Error Code Listing.

For more information about Suppression datasets, including information about

how to configure Suppression and how to use Suppression DataPlus, refer to the

Suppression Additional Data Guide supplied with your data.

The QAS Batch API statistics and counter usage are estimates only. Please be

aware that caching and threading changes could make a difference to the

actual run.

200

Appendix E: Names
Matching Tolerance

Levels

The NamesTolerance setting allows you to configure how QAS Batch matches

names records. The available settings for names matching are described below:

⚫ "Exact" on page 201

⚫ "Intermediate" on page 202

⚫ "Standard" on page 203

⚫ "Relaxed" on page 203

For information on how to configure Names Matching Tolerance, see

"NamesTolerance" on page 166.

This information is only relevant when using GBR data.

If you are using AUS Suppression data, refer to your Suppression

Additional Data Guide for more specific information about AUS names

matching.

201

Exact

In order to achieve a match under the Exact setting, an input name must achieve

the following criteria:

⚫ There must be no spelling differences between the input name and the data.

⚫

⚫ A gender-specific title in the input name must match the gender of the title of

the name in the data. Gender-neutral titles, such as 'Dr' may match to titles of

either gender.

However, gender-specific forenames will still factor into whether a match is

made.

⚫

Input Data Match?

Jonathan Smith Jonathan Smith Yes

Jonathan Smith Jonathon Smith No

Forename aliases will not be matched.

Input Data Match?

William Smith William Smith Yes

Bill Smith William Smith No

Input Data Match?

Mr Alex Smith Mr Alex Smith Yes

Mr Alex Smith Mrs Alex Smith No

Dr Alex Smith Mrs Alex Smith Yes

Dr Alexander Smith Mrs Alex Smith No

A full forename in the input will match to a forename initial in the data.

However, a forename initial will not match to a full name in the data.

Input Data Match?

William Smith W Smith Yes

W Smith William Smith No

202

⚫ All name elements in the data must also be present in the input and must

occur in the same order.

Input Data Match?

William Gerald Smith William Smith Yes

William Gerald Smith William Gerald Tony Smith Yes

William Gerald Smith Gerald Smith No

William Gerald Smith Gerald William Smith No

⚫ If the input contains only a forename and surname, matches will still be

allowed, even if the matching record in the data also contains a middle name

or middle initial.

Input Data Match?

William Smith William Gerald Smith Yes

William Smith William G Smith Yes

⚫ If the input contains a middle name, matches will still be allowed, even if the

matching record in the data also contains an additional middle name or

middle initial.

Input Data Match?

William Edward Smith William Edward Gerald Smith Yes

William Gerald Smith William Edward Gerald Smith Yes

William Edward Smith William Gerald Tony Smith No

Intermediate

The criteria for achieving a name match under the Intermediate setting are the

same as for the Exact setting, with the following exception:

⚫ It is not necessary for all the name elements in the data to also be present in

the input to achieve a match. However, all matching name elements must still

be in the same order.

Input Data Match?

William Gerald Smith Gerald Smith Yes

William Gerald Smith Gerald William Smith No

203

Standard

The criteria for achieving a name match under the Standard setting are the same

as for the Intermediate setting, with the following exceptions:

⚫

⚫

⚫

Relaxed

The criteria for achieving a name match under the Relaxed setting are the same

as for the Standard setting, with the following exception:

⚫ A match can be achieved if the forename and middle names occur in a

different order in the input compared to the data.

Input Data Match?

William Gerald Smith Gerald William Smith Yes

Full forenames in the input can match to forename initials in the data.

Input Data Match?

W Smith William Smith Yes

William Smith W Smith Yes

Matches may still be allowed, even with minor spelling differences between

the input name and data.

Input Data Match?

Jonathan Smith Jonathan Smith Yes

Jonathan Smith Jonathon Smith Yes

Alias matches are allowed.

Input Data Match?

William Smith William Smith Yes

Bill Smith William Smith Yes

205

Appendix F: Delivery
Point Validation

Delivery Point Validation (DPV) has been developed by the United States Postal

Service (USPS) to help you validate the accuracy of your address information. It

enables you to determine whether the actual address exists - all the way down to

apartment or suite information.

DPV Seed Addresses

The DPV functionality has in-built protection against the illegal creation of verified

address lists. This is ensured by having a concept of 'seed' addresses. These are

non-existent addresses that if searched upon, will deactivate the DPV

functionality within QAS Batch API.

If you encounter a seed address, you need to obtain an unlock code to re-enable

DPV functionality. You can then use the DPV unlock tool to unlock the

functionality. The unlock tool is an executable file named either dpv.exe (for 32-bit

installations) or dpv64.exe (for 64-bit installations).

Encountering A Seed Address

If a seed address is encountered, a lock code is reported, together with

instructions on the re-enabling process.

This information is only relevant when using USA data.

QAS Batch will warn you if your DPV functionality is locked and you try to

perform certified cleaning on your data.

206

The lock code is written to a file called DPVStatus.txt within the program directory.

Where it is not possible to write to the DPVStatus.txt file, no error will be returned

– the file will not be updated on the assumption that another instance of QAS

Batch API is attempting to write to it simultaneously.

Experian Data Quality is contracted to report this information on behalf of the

USPS:

"DPV processing was terminated due to the detection of what is determined to

be an artificially created address. No address beyond this point has been

DPV validated. In accordance with the Agreement between the USPS and

Experian Data Quality, DPV shall be used to validate legitimately obtained

addresses only and shall not be used for the purpose of artificially creating

address lists. The written agreement between Experian Data Quality and the

End User also includes this same restriction against using DPV to artificially

create address lists. Continuing use of DPV requires compliance with all

terms of the Agreement. If you believe this address was identified in error,

please contact Experian Data Quality."

When a seed address is encountered and the DPV system disabled, you will

need to submit the lock code to Experian Data Quality Technical Support. You will

be provided with a corresponding alphanumeric unlocking key. This key, when

supplied back to QAS Batch API, will allow DPV functionality to be re-enabled.

QAS Batch API is supplied with a DPV Unlock Utility which can handle the

unlocking process for you. The Unlock Utility is provided for Windows users only

and is called dpv.exe (for 32-bit installations) or dpv64.exe (for 64-bit

installations). If you are using UNIX or do not want to use the Unlock Utility, you

can manually supply the following information by contacting Experian Data Quality

Technical Support:

⚫ The DPV lock code generated by QAS Batch API;

⚫ The date that the seed address was hit;

⚫ The full seed address that was hit;

⚫ Your name, company name, full address and telephone number.

The lock code is reported when a seed address is encountered and can also be

obtained using the QABatchWV_DPVGetCode function (see page 84). The

remaining information can be obtained using the QABatchWV_DPVGetInfo

function (see page 87) provided the DPVStatus.txt file has successfully been

written.

207

Entering The Unlock key

The DPV Unlock Utility can apply the unlock code for you, or you can use the

QABatchWV_DPVSetKey function (see page 89).

The unlock key provided to you by Experian Data Quality Technical Support will

re-enable DPV functionality only once. USPS reserves the right to require

Experian Data Quality to suspend a user's ability to perform DPV processing

when multiple incidents of artificial seed address detection occur.

If you have problems applying the unlock code, contact Experian Data Quality

Technical Support by visiting: http://support.qas.com/contact.

Multithreading Considerations

QAS Batch API can support up to 8 simultaneous threads (providing you have

sufficient RAM available). QAS Batch API internally synchronizes calls into it to

allow the API to support multithreaded integrations using a greater number of

threads.

DPV functionality affects the integration of the API in several ways.

First, if a search thread causes the DPV system to lock itself following a search

involving a "seed address", no further delivery point validation will take place for

any subsequent searches, regardless of the instance or search handle used.

Any call using a QAS Batch API instance handle that has a country base including

USA is able to interrogate the state of the DPV component by using

QABatchWV_DPVState (see page 90) and, where it is locked, will be able to

obtain the DPV lock code by using QABatchWV_DPVGetCode (see page 84)

and set a corresponding DPV unlock key with QABatchWV_DPVSetKey (see

page 89). However, the ability of one QAS Batch API instance thread to unlock the

DPV component that another QAS Batch API search related thread may be using

means that synchronization related complexities must be considered.

For multithreaded integrations that require DPV functionality:

⚫ Ideally, a dedicated top level thread should be used to perform DPV code/key
interrogation/unlocking to prevent multiple unlock attempts from occurring.

http://support.qas.com/contact

208

⚫ Other threads may happen to be synchronized to search ahead of an attempt
to unlock the DPV component (i.e. at the low level within QAS Batch API), so
searches should be re-attempted where the "DPV disabled" bit is set in the
extended dataset-specific information component of QAS Batch API's return
code. See your Data Guide for further information on extended dataset-
specific information bits.

• When using 8 threads for USA, CAN or multicountry you have to be sure that the
limit for the opened files per process is 1024 or higher (UNIX specific - see the
"ulimit -n" command).

209

Appendix G: Generic
Information Bits

The generic information bits provide detailed information on how well an address

match conforms to the QAS Batch API matching rules. See "Matching Rules" on

page 38 for more information.

The numbers below are added together to make up the hexadecimal match code.

For example, 000A0000 would be the result of an error in the input street name

(00080000) and an added or changed street descriptor (00020000).

A brief explanation of each of the generic information bits is provided below.

10000000

The elements in the input address were not in the expected order.

For example, in the address 'Top Flat, 4 Baker Street, Dyfed, Aberystwyth, SY23

2BJ', the county (Dyfed) should appear after the town (Aberystwyth). In this

example, infobit 00000020 is also returned as a result of the address cleaning

process.

20000000

Preferred matching rules were not satisfied, and the match will be marked with, at

best, intermediate confidence.

40000000

The address has been marked with, at best, intermediate confidence because the

close matching rules were not satisfied.

210

80000000

Conditional formatting has taken place. Some address elements in the specified

output format were not present in the matched address record and have been

replaced with equivalent address elements. For more information on how QAS

Batch API can apply conditional formatting when using a particular dataset, and

which address elements may be affected, consult the relevant Data Guide.

01000000

Extra numbers were found in the address. An example might be '4 Granary 8

Road, Devizes, Wiltshire, SN10 3DP'. A full match was achieved (4 Granary

Road, Devizes, Wiltshire, SN10 3DP), but the additional number(s) (i.e. '8' in the

above example) may reduce the confidence level to intermediate.

02000000

Additional text between a number and its expected adjacent component has been

found, for example between a property number and a street name. The

confidence level has been reduced to intermediate.

04000000

No place element (e.g. a locality in Australia) was found in the address, so the

confidence level may be reduced.

08000000

The item associated with a number is missing. For example, the British address '4,

South Marston, Swindon, SN3 4XX' is missing the street name 'Ash Gardens' after

the building number. In this example, infobits 10000000 and 2000000 are also

returned due to the absence of a street name. In addition, further infobits are

returned as a result of the address cleaning process (i.e. adding the street name

and reformatting the address).

00100000

One or more essential matching rules were not satisfied, so the match confidence

has been reduced to low.

211

00200000

A timeout has occurred, and the address was not matched. The default timeout

period is 5 seconds; you can change this with the configuration setting

BatchTimeout in qaworld.ini.

00400000

The input address begins with unmatched text before a premise number. For

example, the input address 'Village Arcade, 5 Hillcrest Road, Pennant Hill, NSW,

2120' contains more information than the official version, which does not contain

the 'Village Arcade' element before the premise number, '5'. See also 00004000,

which is similar but occurs even if no premise number is present.

00800000

A leading number was unused in the input address. For example, the Level 5

element in the address 'L 5, 2/6 The Bollard, Corlette, NSW' is not found in the

official address.

00010000

There was ambiguity in the supplied range of the input address. For example, the

address '26-30 Delhi Street, Adelaide SA 5000' has an ambiguous range because

there is a 26, 28 and 30 Delhi Street and the input address cannot be matched to

a specific property.

00020000

A street descriptor has been added or has been changed. For example, with '10

Railway Road, Serviceton, Vic', the correct descriptor 'Street', is returned instead

of 'Road'.

00040000

Additional text in the input address was too significant to ignore. For example, the

French address '18 boulevard Voltaire, 75011 Paris CEDEX 11' contains

unmatched, but significant, information 'CEDEX 11'. This returns an intermediate

confidence level.

212

00080000

There was an error in the input street name that QAS Batch API has amended.

00001000

There was an error in an input place name (for example, an Australian locality)

that QAS Batch API has amended.

00002000

QAS Batch API has added or changed a key premise number or range compared

with the input address, such as a building number in Australia data where a

single number matched to a range, or organisation names in the France data.

00004000

The input address begins with unmatched text. For example, the input address

'Rose Cottage, Hillcrest Road, Pennant Hill, NSW, 2120' contains more

information than the official version, which does not contain the 'Rose Cottage'

element. See also 00400000, which is similar but occurs only when the

unmatched text occurs directly before a premise number.

00008000

A name was used to secure an address match.

00000100

The address line settings of the currently configured layout are of an insufficient

width to contain each address element. Widen the address lines to ensure that

the address elements are not truncated.

00000200

Complete address element(s) are unable to fit on the address line. Widen the

address lines to ensure that all of the address elements are visible.

00000400

QAS Batch API failed to generate one or more non-address items. It is likely that

the DataPlus set could not be opened.

213

00000800

When in enhanced cleaning mode, QAS Batch API cannot fill the unmatched

address elements back into the database. To resolve this, widen the address

lines or add additional lines.

00000010

Postal address elements have been moved to the right or downwards to allow

unmatched elements to be incorporated in an enhanced address.

00000020

QAS Batch API has determined that the supplied address has been non-trivially

cleaned. This means that spelling may have been corrected, capitalization

changed, or the input address elements could have been reformatted in some

way. Note that quotes and spaces are ignored during QAS Batch API's

comparison process.

00000040

Key input address elements were judged effectively correct as supplied, although

the output address's representation or formatting may differ (for example, address

elements may have been expanded or abbreviated, capitalization changes made,

etc.).

00000080

If the user defines InputLineCount (including blank) and the input line count

does not match the number of lines defined in the input search string (allowing for

quotes), this bit will be set. This bit does not affect match confidence.

00000001

The final tests on the address have failed against the strict matching rules; hence

the match confidence level is reduced to, at best, intermediate confidence.

00000002

QAS Batch API has found a premise level partial address match.

214

00000004

QAS Batch API has found a street level partial address match.

00000008

QAS Batch API has found a place level partial address match.

215

Appendix H: Integration

Example

Below is an example of integrating the reporting functions into an instance of the

API. For more general examples of using the API, see "Pseudocode Example Of

QAS Batch API" on page 49. This integration example assumes you have

knowledge of the API functions. For more information on these, see Suppression-

Specific Functions.

Integrating XML reports

The conventions within the pseudocode are below:

/* Comment */ Italic text between asterisks and forward

slashes denotes a comment.

[QABatchWV_DataSetInfo] The functions which relate to each part of the

pseudocode appear in bold type on the right

hand side of the page.

[QABatchWV_Open (Close)] Some API functions are 'paired', i.e. when a

function is called, its pair must also be called at

some point. When a paired function is used in

the pseudocode, its pair appears in brackets

directly after the function name.

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Convention Meaning

216

Pseudocode Listing

/* Before calling any function in the QAS Batch API, you must initialise it with

QABatchWV_Startup. Once initialised, you must open an instance of the API

*/

Initialise API [QABatchWV_Startup

(Shutdown)]

Initialise an instance of the API [QABatchWV_Open

(Close)]

Open a counter handle [QABatchWV_

CounterOpen

(CounterClose)]

/* Once the counter handle is open, addresses may be cleaned in the normal

way. For more information on how to do this, see "QAS Batch API Functions"

on page 54, and for examples see "Pseudocode Example Of QAS Batch API"

on page 49. Each address cleaned will be added to the open report, as well

as information about the number of clicks used. When address cleaning is

completed, you can output the information stored in the open report. */

Extract report using counter

handle

[QABatchWV_

CounterReport]

/* A XML report is returned into the specified buffer as a string. You can clean

further addresses and extract the report as many times as required. Once

completed, close the counter instance and the instance of the API */

Close the counter handle [QABatchWV_

CounterClose]

Close instance of API [QABatchWV_Close]

Shutdown API [QABatchWV_Shutdown]

Viewing The Report

To view XML reports generated by QABatchWV_CounterReport:

1. Write the contents of the QABatchWV_CounterReport output buffer to an

.xml disk file.

2. A stylesheet is provided with QAS Batch to convert the XML into a browser

based report.

While the instance of the API is open, you can use the function QABatchWV_

CounterReportLength at any time to return the current size in bytes of the XML

report that would be returned by QABatchWV_CounterReports

217

To generate the report, ensure that the XSL stylesheet and the flash

components (supplied with QAS Batch) have been copied into the same

directory as the XML file.

3. The report will be displayed when the XML file is opened in your Internet

Browser.

219

Glossary Of Terms

Absolute Contacts

Absolute Contacts Tracking data is a subset of the Absolute Movers Suppression

Set which also contains contacts' forwarding addresses.

Absolute Movers

Absolute Movers data contains details of individuals who have moved from an

address.

Additional Dataset

Additional datasets are available with some datasets to enhance the data. They

cannot be used without the base dataset they are associated with.

For example, the Names additional dataset is available for USA and GBR data

only.

Address Elements

The fields that comprise an address. Each dataset contains a set of address

elements which are specific to that country.

For example, in United Kingdom data, these fields may include building number,

thoroughfare, town, and postcode.

Address Layout

The format of an address arranged with the Address Elements in an order

specific to the convention of the country.

Address Match Code

See Match Code.

220

Audit Code

A text-based code located in the counters file on the disk where QAS Batch API is

installed. It should be extracted and sent to Experian Data Quality on a monthly

basis, in order that you can be invoiced for the number of clicks used. See

"Managing Suppression Costs" on page 197 for more information.

Audit Log

A log created at installation where the API regularly updates all current meter

values. This allows you to check your meter usage against your billing history.

Post-pay meters (for use with QAS Batch API with Suppression) will count down,

rather than counting up. See "Managing Suppression Costs" on page 197 for

more information.

Australia Mortality Data

Mortality data contains details of people who have died. Depending on the

options selected, you can match the records in your data to a household, to a

surname or to a named individual.

Clicks

A click is a single count against a meter. You may be charged for a permanent,

one-off (temporary), tracking or dual click when an address record is matched

against a Suppression dataset.

If an address record matches more than one GBR Suppression dataset, the order

in which matches should be used (and therefore your costs) depends on the

options set in the Suppression Hierarchy.

Configuration Files

Both Windows and UNIX users can use the configuration files (qawserve.ini and

qaworld.ini, as well as any layout-specific configuration files) to configure the QAS

server, to specify which Datasets are installed, to configure search options and

results settings and to set output address formats.

DataPlus

Extra information that can be returned with each matched address.

Examples of DataPlus information depend on the dataset being used, but

examples for United States data could include Country Code or a Postnet

barcode.

221

Dataset

A collection of proprietary data files, containing address information or address-

enhancing information, that are shipped to customers on a data CD-ROM or DVD-

ROM and are also available via Electronic Updates.

Dataset Identifier

The three character ISO code that uniquely identifies a dataset. For example, the

dataset identifier for United Kingdom data is 'GBR'.

Data Caching

Caching stores data in memory for future reference, instead of reading it from a

hard disk or across a network as required. In general, the less data is accessed

over a network or from a disk, the faster QAS Batch API will run (subject to your

computer having sufficient free physical memory).

Data Expiry

Each dataset has an expiry period.

The expiry period is the number of days remaining until the data is no longer

valid.

Data Guide

A reference guide that is supplied with each dataset that you purchase. It provides

dataset-specific information and search tips for each dataset.

Data Mapping

A combination of a dataset and additional datasets which is used as a dataset.

Each data mapping has a unique identifier and name.

Data Mapping Identifier

See Identifier.

DPV

DPV (Delivery Point Validation) is a USPS (United States Postal Service) system

designed to validate the accuracy of your USA address information. It enables

you to determine whether the address exists at a sub-premise level. DPV may not

be used to create address lists artificially. DPV uses Seed Addresses to detect

when address records appear to be the result of artificial manufacture.

222

Goneaway

GBR Goneaway Suppression File (GSF) additional suppression data contains

names and addresses of people who have moved house.

High confidence

QAS Batch API returns a High confidence match when it is sure that the output

address matches the input data. This happens when an input address is fully

accurate, or when incomplete address data is detailed enough (for example,

exact property number, street and locality) to have the remaining address details

appended.

Identifier

The identifier is a unique three character alpha-numeric code that defines a data

mapping.

Ini File

A common name for the Configuration Files qawserve.ini, qaworld.ini and

qalicn.ini, as well as any layout-specific configuration files you might create.

Input Fields

The fields in your source database containing the address information to be

cleaned.

Intermediate Confidence

A confidence level of Intermediate is returned when QAS Batch API is reasonably

sure that it has found the right match. This might occur if the input address is

misspelled slightly or if the address contains extra numbers.

Hullenbergweg, 1-3, 1101 BW, Amsterdam Zuidoost

In the Netherlands address example above, QAS Batch API finds an extra number

in the address (3). However, with a full postcode available to search on, QAS Batch

API is able to find the correct address. Only the extra number in the address

prevents a High confidence match.

ISO Code

International Standards Organisation code. See Dataset Identifier.

223

Licenses

You receive a licence key for each combination of data and product that you

purchase. Failure to enter a valid licence key means that the product will be

unable to use data.

When you have an evaluation of an Experian Data Quality product or data,

evaluation licence keys are provided that set time limits on the usage of the data.

To continue using the product and data after these time limits have been reached,

you must purchase a full licence.

In addition, you can purchase a metered licence for use with QAS Batch API, to

control how address lookups, address matches and search results are charged.

Low Confidence

QAS Batch API sets the confidence level to low if it finds a match which differs

considerably from the input address.

Gehilweg 16, 1101 CD, Amsterdam Zuidoost

In the Netherlands address example above, QAS Batch API cannot find a

Gehilweg in Amsterdam, and returns another match (Hogehilweg 16) instead. As

the returned address is significantly different from the input address, QAS Batch

API is not confident that this is the right match.

Mailing Preference Service

GBR Mailing Preference Service suppression data contains details of individuals

who have opted not to receive unsolicited mail.

Match Code

When QAS Batch API cleans an address, any processing which takes place and

any changes which are made to the address are recorded in a match code.

Meter

A meter is used to measure usage of clicks. It contains the total number of clicks

used (by dataset and click type) since it was activated. There are four types of

click:

⚫ Permanent

⚫ One-off

224

⚫ Dual

⚫ Tracking

See "Managing Suppression Costs" on page 197 for more information about how to

pay for Suppression data via a meter.

MOR

See "Mortality Data" below.

Mortality Data

Data which contains details of people who are recently deceased. Depending on

the options selected, you can match the records in your data to a household, to a

surname, or to a named individual.

Examples of this type of data include the GBR Mortascreen, GBR Mortality

Suppressions and AUS Mortality suppression datasets.

MSS

See "Mortality Data" above.

NCOA Suppress

GBR National Change of Address Suppression data contains details of

individuals who have moved from an address.

NCOA Update

GBR National Change of Address Update tracking suppression data contains

names of customers and the details of addresses that mail has been redirected to

and from.

Output Fields

The fields in your database as they will appear after cleaning.

Sample Files

A number of files are shipped with QAS Batch API, containing sample addresses

for use with QAS data. You may find it useful to clean one of these databases

before you use QAS Batch API to clean your own data.

225

Seed Addresses

Seed addresses are used by the DPV system to protect against the illegal

creation of verified address lists. If one of these non-existent 'seed' addresses is

searched upon, the DPV functionality within QAS Batch will be deactivated. For

more information see "Appendix F: Delivery Point Validation" on page 205.

Suppression

Suppression data contains additional information associated with the occupant(s)

of an address. Specifically, you can clean your records against Suppression data

and then return relevant Suppression DataPlus information for any matching

addresses in your database. This makes it possible to easily see any addresses

which may not be useful to your business.

Telephone Preference Service

The GBR Telephone Preference Service suppression dataset contains details of

individuals who have opted not to receive unsolicited telephone calls.

The Bereavement Register

GBR Bereavement Register suppression data contains names and addresses of

deceased individuals.

Tracking

A Tracking dataset is similar to a Suppression dataset, but the forwarding address

of the property replaces the original record instead of it being suppressed.

Tracking Mode

When using NCOA Update or Absolute Contacts Tracking mode, users will be

charged one tracking click for returning a forwarding address. Furthermore, if the

forwarding address matches against other Suppression datasets, these matches

will be charged according to the criteria for permanent and one-off clicks. See the

United Kingdom With Suppression Additional Data Guide for more information

about NCOA Update and Absolute Contacts data.

Update Code

Code provided by Experian Data Quality on receipt of initial audit code. When

applied to an API installation, it initialises all post-pay Suppression counters.

227

Index

0

0 Low confidence 34

5

5 Intermediate confidence 35

9

9 High confidence 35

A

AbbreviateItem 174

ABC 195

Absolute Contacts 195

Acceptance matching rules 40

Adding licence keys 7

Address action indicator 36

Address match codes 29

address action indicator 36

match confidence level 34

match success 30

postal action indicator 35

AddressLineCount 172

AddressLineN 172

B

BatchTimeout 161

C

CacheMemory 164

CapitaliseItem 173

Checking dataset installation 151

Cleaning process 21

stage 1 - pre-process

address 23

stage 2 - match country 24 stage

3 - match street,

organisation, PO box

and place 24

stage 4 - match premises 25 stage

5 - select best match 25

CleaningAction 162

Clicks 192

dual 193

NCOA tracking 193

one-off 192

permanent 192

Close matching rules 39

ConditionalFormat 175

Configuration settings 150

AbbreviateItem 174

AddressLineCount 172

228

AddressLineN 172

BatchTimeout 161

CacheMemory 164

CapitaliseItem 173

CleaningAction 162

ConditionalFormat 175

CorrectAApiLoc 154

CorrectACacheLevel 165

CorrectADataLocCAN 155

CorrectADataLocUSA 154

CountryBase 156

CountryRevert 158

DataMappings 152

DatasetPrecedenceOrder 168

InputLineCount 170

InputLineN 170

InstalledData 151

LogErrors 159

LogFile 160

MultiValueDPSeparator 177

NamesTolerance 166

OemCharacterSet 167

SearchLevel 163

Configuring QAS Batch API 147

checking dataset

installation 151

defining processing options156

format of a configuration file 148

setting the input address

format 170

setting the output address

format 172

CorrectAApiLoc 154

CorrectACacheLevel 165

CorrectADataLocCAN 155

CorrectADataLocUSA 154

CountryBase 156

CountryRevert 158

D

Data

installing 10

licenses 7

updating 10

Data files 15

Data types 43

function return values 44

NULL termination 45

padding 46

parameters - input 44

parameters - output 44

passing by value or

reference 45

programming languages 45

DataMappings 152

DataPlus 26

Dataset-specific matching rules 41

Dataset Identifier 15

DatasetPrecedenceOrder 168

Defining processing options 156

Delivery Point Validation 205

Diacritics 167

DPV 205

Enabling 206

Lock code 206

Multithreading

considerations 207

DPV Seed Addresses 205

Dual clicks 193

229

E

Electronic Updates 11

Encountering a Seed Address 205

Error code listing 179

Essential matching rules 39

Estimate Mode 198

EU 11

Evaluations 8

F

Files needed to run your

integrated application

UNIX 9

Format of configuration file 148

Function return values 44

G

General functions 54

Generic information bits 209

Generic matching rules 38

H

Hierarchy 194

High confidence 222

How Does QAS Batch API work?21

How QAS Batch API matches

addresses 21

stage 1 - pre-process

address 23

stage 2 - match country 24 stage

3 - match street,

organisation, PO box

and place 24

stage 4 - match premises 25

stage 5 - select best match 25

I

Information bits 36

InputLineCount 170

InputLineN 170

InstalledData 151

Installing

overview 5

system requirements 5

Installing QAS Batch

UNIX 9

Windows 9

Integration

XML Reports 215

Intermediate confidence 222 ISO

codes 15

L

Licence

evaluation 8

licence key 178

upgrading 8

Licence key 178

Licence keys 7

Licenses

adding licence keys 7

licence keys 7

Windows data installer 7

LogErrors 159

LogFile 160

Low confidence 223

230

M

Match confidence level 34

0 low 34

5 intermediate 35

9 high 35

Match country 24

Match premises 25

Match street, organisation, PO

box and place 24

Match success 30

Match success letters 30

Matching rules 38

Acceptance matching rules 40

Close matching rules 39

Country specific matching

rules 41

Essential matching rules 39

Generic matching rules 38

Preferred matching rules 39

Multithreaded integrations 48

Multithreading Considerations 207

MultiValueDPSeparator 177

N

NamesTolerance 166

NCOA tracking 193

NULL termination 45

O

OemCharacterSet 167

One-off clicks 192

Operating systems 5

Overviews

installing 5

P

Padding 46

Parameters

Input 44

Output 44

Passing by value or by

reference 45

Permanent clicks 192

Postal code action indicator 35 Pre-

process address 23

Preferred matching rules 39

Programming languages 45

Pseudocode example of QAS

Batch API 49

Q

QABatchWV_ApplyUpdateCode 59

QABatchWV_ChangeLayout 61

QABatchWV_Clean 63

QABatchWV_Close 66

QABatchWV_

CompareAuditCode 68

QABatchWV_CounterClose 70

QABatchWV_CounterOpen 72

QABatchWV_CounterReport 74

QABatchWV_

CounterReportLength 76

QABatchWV_CountryCount 78

QABatchWV_DataInfo 58

QABatchWV_DataSetInfo 82

QABatchWV_DPVGetCode 84

231

QABatchWV_

DPVGetCodeLength 86

QABatchWV_DPVGetInfo 87

QABatchWV_DPVSetKey 89

QABatchWV_DPVState 90

QABatchWV_EndSearch 92

QABatchWV_

FormattedLineCount 94

QABatchWV_GetAuditCode 96

QABatchWV_GetCountry 98

QABatchWV_

GetFormattedLine 109

QABatchWV_GetLayout 111

QABatchWV_GetLayoutLine 58

QABatchWV_GetLicenceInfo 113

QABatchWV_GetMatchInfo 115

QABatchWV_GetUnusedInput 117

QABatchWV_GetUnusedLine 58

QABatchWV_LayoutCount 120

QABatchWV_LayoutLineCount 122

QABatchWV_

LayoutLineElements 124

QABatchWV_LicenceInfoCount127

QABatchWV_Open 129

QABatchWV_RunMode 132

QABatchWV_Search 58

QABatchWV_Shutdown 134

QABatchWV_Startup 135

QABatchWV_

UnusedLineCount 137

QAErrorHistory 139

QAErrorLevel 141

QAErrorMessage 142

QAS Batch

installing 5

QASystemInfo 143

R

Re-enabling DPV 206

Replaced functions 58

Retrieval functions 56

Retrieving DataPlus information 26

Returned address 25

Running the test harness 18

S

Search functions 56

SearchLevel 163

Seed Addresses 205

Select best match 25

Setting the input address

format 170

Setting the output address

format 172

SETUP.EXE 9

Summary of QAS Batch API

functions 54

Supported operating systems 5

Suppression 187

clicks 192

costs 191, 197

dual clicks 193

Estimate Mode 198

hierarchy 194

managing costs 197

NCOA tracking 193

one-off clicks 192

payment 191, 195

permanent clicks 192

Temporary Counters 198

To-Date Billing 197

232

troubleshooting 199

uses 187

System functions 55

QAErrorLevel 141

QAErrorMessage 142

QASystemInfo 143

System requirements 5

T

TBR 188

Temporary Counters 198

Test harness 18

Testing your API installation 17 To-

Date Billing 197

Tracking Hierarchy 195

Troubleshooting Suppression 199

U

Update postcode 162

Updating

data 10

Upgrading a licence 8

USA Specific DPV Functions 56

W

What is a licence key? 7

What is the QAS Batch API? 1

Windows data installer 7

X

XML Integration Example 215

